VD Photon Detector Readout

- Different options described in the VD proposal for PD readout
 - https://edms.cern.ch/document/2429382/1
 - Optical transmission of analog signals, as DarkSide is developing
 - Optical transmission of digital signals, so called full cold electronics option

FIG. 44. Full Cold Electronics option.

Optical Transmission of Analog Signals

- Meeting with DarkSide team on Feb. 10 about the latest progress of the development organized by Flavio and Cristiano
- Non-trivial R&D effort, linearity of LED output to be demonstrated

Optical Transmission of Digital Signals

- Full cold electronics option has several key R&D topics
 - Power distribution: PoF, being investigated by Fermilab/CERN
 - Analog front-end: HD PD amplifier or ASIC?
 - Digitization: COTS ADC or ASIC?
 - Data aggregation: FPGA or ASIC?
 - Optical transmitter: COTS or CERN VTRx+, being investigated by Fermilab
- ADC is a key device to enable the optical transmission of digital signals
 - SBND has successfully identified the COTS ADC solution, ADI AD7274, after ~1 year of studies with concentrated effort
 - Feb 2017: first SBND ADC committee meeting
 - Jul 2017: COTS ADC lifetime study plan
 - Mar 2018: conclusion of COTS ADC lifetime study

PD Requirement

TABLE V. Requirements and Physics purposes for the VD Photon Detector System - $\sim 4\pi$ -configuration option

Detector Requirement	Value	Physics Purpose
Trigger efficiency	≥ 99%	- SN burst trigger up to
for interactions with		the Large Magellanic Cloud (50 kpc)
energy deposit $E_{dep} \geq 5 \text{ MeV}$		yielding 10 interactions in 10 kt LAr
in 100% of detector fiducial volume		- Low-energy background rejection
Spatial resolution	≤ 1 m	- Background rejection for
for interactions with		SN, solar, nucleon decay
energy deposit $E_{dep} \ge 10 \text{ MeV}$		
Energy resolution	≤ 8%	- Identification of SN spectrum features
for interactions with		from different SN dynamical models
energy deposit $E_{dep} \geq 5 \text{ MeV}$		
Time resolution	$\leq 200 \text{ ns}$	- SN burst triggering
		- Identification of SN time features
		due to standing accretion shock instabilities
		- Identification of neutrino "trapping notch"
		(SN dip in luminosity)

- How can we make the connection of PD requirements based on the physics studies with readout parameters?
 - Timing resolution, signal dynamic range, S/N ratio etc.

Timing Resolution

- Timing resolution is a critical parameter to define the readout chain design
 - We need to understand the requirement of < 200 ns timing resolution, and implication to the readout design
 - Can spatial resolution be much better than 1 m with improved timing resolution?
- Flavio's talk in Jan DUNE collaboration meeting
 - https://indico.fnal.gov/event/46502/contributions/2059 27/attachments/139204/174615/VD-PDS-4pi-RandD-Jan25-2021-DUNECollMtg-v2.pdf
 - Time feature of photons detected by ARAPUCA in ProtoDUNE with Xenon doping (N2LAr + 18.8Xe) is ~20 ns for the fast component, and most photons detected between 200 800 ns
 - What a typical signal waveform looks like, and what information is of interest?
- How can we quantify the timing resolution requirement in the VD proposal?
 - Scintillation light yield in LAr: spread in arrival times of photons from a track to X-ARAPUCA, with scattering and reflections included
 - Contribution from X-ARAPUCA: area of WLS plate, area of SiPMs per WLS plate, intrinsic photon spread etc.
 - Contribution from the readout electronics: electronics noise can be made negligible, timing resolution can be one to two orders of magnitude better than the sampling interval

Timing Resolution → ADC Sampling Rate

Detail waveform reconstruction and timing resolution

Using sinc-interpolation + 'digital' constant fraction discriminator, leads to a better timing analysis

- How is the timing resolution related to the sampling interval/sampling frequency?
 - Sampling and reconstruction of the signal: sampling with Nyquist theorem and anti-aliasing filter, followed by reconstruction of the signal. Very few samples (~6) are needed to reconstruct the signal in this case (semi-gaussian shaping with $t_p \sim 1$ us). After reconstruction, one cannot tell from the reconstructed waveform what was the sampling frequency
 - Given a signal waveform (SiPMs single photon response is constant), the timing problem reduces to finding the centroid of the semi-gaussian response. It can be shown that the timing resolution is, as expected, inversely proportional to S/N, i.e., sigma ~ $(3/2)t_p/(S/N)$
- Measurement of nEXO SiPM with SBND readout electronics shows ~ 7 ns timing resolution
 - Timing resolution of 100 ns rms would require S/N \sim 15, which can be achieved for a single photoelectron
 - If the expected signals are more than a single photon electron that becomes easy to achieve

What does it Imply?

Optimize S/N (timing resolution) with selection of Cb

- With clear understanding of the PD requirements, one can devise the readout chain with better focus
 - COTS ADC identified for SBND, plus the SBND readout chain could be an option for PD readout demonstration
 - New set of ASICs may help with the overall power constraints
 - TPC charge readout chain (FE ASIC + ColdADC + COLDATA) could be a basis for the new development of PD readout
 - Need further optimization on ADC power consumption and possibly digital signal processing to ease readout link requirement
 - Effort could be put on optical transmission of digital signals, depends on the data volume required for various measurements