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Background

120GeV proton beam at 50˚C up to 0.5 dpa

Primary beam window of the NuMI
neutrino source at Fermilab

Courtesy of Dr. S. Kuksenko and Mr. P. Hurh

Fracture of the Be specimen

Operation conditions: 120 GeV proton beam 
at 1MW, ~40-100 ℃ for current accelerator;
at 4MW, ~100-340 ℃ for future accelerator.
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Radiation in Be induce the formation of He bubbles in fusion
application

M. Klimenkov, et al. Sci. Rep. 10 (2020) 8042

Neutron irradiation @ 713 K, >3000 appm He

Radiation Damage in Beryllium
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The temperature-dependent He bubble formation [1-4].

Radiation Damage in Beryllium

High energy proton irradiation of beryllium results in He production rates 
1,000 times higher than in the fusion environment (neutron irradiation).

Irradiation Temperature

He bubbleHe-V complex

Vacancy He

[1] M. Klimenkov, et al. JNM, 443 (2013) 409; [2] K. Chakin, et al. JNM, 307 (2002) 657; 
[3] W. V. Renterghem, et al, JNM, 374 (2008) 54; [4] P. Liu, et al. Fusion Eng. Des, 140 (2019) 62.  
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Adapted from Gary S. Was, Fundamentals of radiation material science, Springer, 2007

Defect reactions and 
recombination

Atomistic simulations

Long-time evolution and 
aggregation; 

Microstructure evolution
Continuum models

Time Scales in Radiation Effects
Defect builds up Defect evolution
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Composition and structure
Atom positions, types

Solve Schrödinger equation 
HF=eF

Electronic Structure
Defect Energies

Chemical Reaction Rates

Thermodynamics and 
Kinetics information

VSi4


AgC3


VC3 


VSi4


Ag 



(a)
 (b)


Segregation and diffusion of 
fission products to GBs in SiC

Quantum Mechanical Approach
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Atoms evolve according to Newton’s 
equations of motion:

Energy V can be calculated from 
empirical/machine learning
interatomic potentials
€ 

mi
∂ 2ri
∂t 2

= −
∂V
∂ri

What can we learn from MD?
• Model radiation-induced collisions, defect 

formation, diffusion, clustering etc over relatively 
short time scales (< 1µs)

• Structural properties (dislocations, phase 
transformations)

• …

Molecular dynamics technique

V = V2 (
!rij )+ V3(

jk
∑

j
∑ !rij,

!rik )

Classical Molecular Dynamics (MD)

10 keV self-recoil in Au
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V. Slezov, Kinetics of First-Order Phase Transitions, 1st ed., Wiley-VCH, 2009. 
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What is Cluster Dynamics?
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TEM bright field image of SiC. Small 
clusters are indicated by red circles.

1 MeV Kr ions irradiate 3C-SiC for 120 s at 800 ˚C
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 Experiment Density
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Cluster size distribution from CD
based on potential physics

What Does Cluster Dynamics Output?
• Reveal mechanisms for defect evolution that cannot be
observed in experiments

C. Liu, L. He, Y. Zhai, B. T. Puschel, P. M. Voyles, K. Sridharan,
D. Morgan, I. Szlufarska., Acta Materialia, 125 (2017) 377-389 



Cu+Mn-Ni-Si precipitates form under irradiation in steels
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What Does Cluster Dynamics Output?
• Predict radiation damage at the conditions beyond the
experimental observations

H. Ke, P. Wells, P. D. Edmondson, N. Almirall, L. Barnard, G.
R. Odette, D. Morgan, Acta Materialia 138 (2017) 10-26.



Cluster Dynamics
Model

Experimental
Conditions

Molecular
Dynamics

Quantum
Mechanical
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Our Strategy for Modeling Radiation in Be

• Defect Cluster Size
• Number Density

Radiation
Experiments

Atomistic Simulation based & Experimentally Validated
Cluster Dynamics Model

Machine
Learning
Potential
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Clustering & 
dissociation 

Interstitial VacancyPKA

Defect
generation

Point defect 
migration

Point defect 
reaction

Current Status of the CD Model
• Physical processes have been involved:

@ 713 K 
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Clustering & 
dissociation 

Interstitial VacancyPKA

Defect
generation

Point defect 
migration

Point defect 
reaction

Next Plan of the CD Model
• Physical processes have been involved:

Cluster diffusion

Cluster

• Physical processes will be involved:

Large size cluster (N>10000)
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Experiments: Neutron vs Proton Irradiation

Neutron irradiation Proton irradiation
e

• Radiation damage profile difference:

• Stopping power difference:

J. C. Haley et al. JNM, 533 (2020) 152130.
Fe9Cr

Neutron irradiation @
713 K, >3000 appm He

M. Klimenkov, et al. Sci. Rep.
10 (2020) 8042

He bubble in Be
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Experimental Plan

Combine low-energy proton irradiation of Be with or without dual He ion
implantation (Proton + He) and advanced materials characterization in

order to include multiple DPAs and temperatures of interest

Characterization Lab for Irradiated MaterialsBeryllium dedicated glove box
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• Cluster Dynamics model has been built to predict the microstructure 
evolution in the irradiated Be metal.

• More physical processes would be involved: the size-grouping method for 
large cluster and diffusivity of defect clusters.

• Experimental data will be performed to validate the CD model.

Summary and Future Work
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