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Summary

e Motivations
o The deep-learning based particle energy, vertices and momentum (energy+direction)
reconstruction are necessary for a full Al based event reconstruction chain.
o Combining the particle mass with its kinetic energy and direction, a final state particle’s
4-momentum can be obtained

e This talk

o Vertex Reconstruction
m 2-D CNN had good results with 2-stage training
m Developing 3-D CNN for NuE CC
o Efficiency improvements using alternative deep learning architectures



3-D Pixel Maps Visualization

e Created by combining spatial
and charge information from
all 3 2-D planes.

e These 3-D pixelmaps are
100x100x100 pixels which
are 125x125x250 cm for v,
and 500x500x1000 cm for
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Vertex Reconstruction



Current 2-stage, 2-D CNN vertex reconstruction

e The issue may caused by the large pixel map size (low statistics)
e Inour current 2-D CNN vertex reco, which has better performance than standard method, we

construct a 2-stage architecture.

e Stage 1: propose the vertex on each plane and crop each view and make smaller pixel map

Stage 2: reconstruct the 3-D vertex with the smaller pixel map

e We will try similar method in 3-D CNN
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2-CNN architecture and results (llsoo Seong)
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3-D Architecture

e Loss Function

o Log-MSE for trianing
o Euclidean distance in real coordination
for evaluation
e Training
o 50 epochs

e Models Trained
Event RegCNN
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Input: 3-D full-event pixel map
Output: 3-D vertex coordinate

Prong RegCNN

Input: 3-D prong-only pixel map
Output: 3-D vertex coordinate
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Log-MSE as Loss function
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Calculate the logarithm of MSE
of the 3D directions in the

relative coordination
o Consistent with the input volume
o The input volumes are converted
from the real coordination

m To have a fixed shape
(100x100x100)

The best performance so far
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Z-axis Adjustment for The Loss Function

e The final evaluation is made in the real coordination
o Loss function in relative coordination could be an inaccurate metric for the training
e Rel-real coordinates conversion
o Tpe] = (Treq — centery, + length, /2) * (bins, [length,)
o Yrel = (Yreat — centery + length, /2) * (bins, /length,)
o Zrel = (Zrewt — center, + length. /4) * (bins, [length.)
e Lengths in the true coordination on z-axis are always 2 times as on x/y-axis
o ‘“center” and “bins” are consistent in x/y/z-axis
e /-axis adjusted loss functions
o Distance between true and predicted vertices on z-axis gets multiplied by 2



Z-MSE as Loss function
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e Calculate the Z-MSE of the 3D
directions in the relative

coordination
o Consistent with the real coordination

e Not as good as the Log-MSE
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Log-Z-MSE as Loss function

Log(Mean((ztrue — Tprea)?s (Ytrue
Calculate the logarithm of
Z-MSE of the 3D directions in

the relative coordination
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Consistent with the real coordination

Slightly worse than Log-MSE
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NUuECC - Vertex Regression Distance Histogram Per Axis
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NUuECC - Vertex Regression Distance Histogram Per Axis

The 3-D RegCNN is still not as good

as the standard method in X/Y-axis

o  While the RegCNN-predicted average
distance is smaller than the standard
method’s

m CNN: 243
m Standard: 8.96

The standard method makes larger
mistakes (70~60 c¢m) on more
events than the 3-D RegCNN
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3-D Visualization of Vertex Reconstructions

Rendering the vertices in the relative coordination volumes

[
o Each pixel map is of fixed shape 100x100x100 in relative coordination
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Efficiency Improvements using Alternative
Architectures

On Direction Reconstruction



3-D CNN Architecture

Loss Function

o Cosine Distance:

min(1 + 3 ||b||’ ~ Tal- ||b||)

o Angular resolution (angle dlfference) in

radians/degrees:

Training

arccos(

IIaII IIbII )

o 100 epochs

Models Trained
o Event RegCNN

Input: 3D full-event pixel map
Output: primary electron/muon prong direction

o Prong RegCNN

Input: 3D prong-only pixel map
Output: electron/muon prong direction
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Submanifold Sparse Convolutional Network

Submanifold Sparse Convolutional Network (SSCN) was designed to improve

the training efficiency for high-dimension sparse data (Graham, 2017).
o Perfectly suits our scenario: only a small portion of voxels in our 100x100x100 3-D pixel maps
contain hits.
o SSCN can provide similar performance while reducing the computation and memory
requirements by ~50%

Researchers in the DUNE community
have already applied SSCN in their E:' '-
models and obtained validated S

improvements (Domine, 2019).

Figure 1: Example of “submanifold” dilation. Left: Original curve. Middle: Result of applying
a regular 3 x 3 convolution with weights 1/9. Right: Result of applying the same convolution
again. The example shows that regular convolutions substantially reduce the sparsity of the
feature maps.

(Graham, 2017)



PointNet

e PointNet is a novel type of neural network that

directly consumes point clouds. (Qi, 2017)
e |tis designed for 3D recognition tasks
including object classification, part
segmentation and semantic segmentation
e It obtains on par or better
results than state of the
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SSCN is trained on cropped prong-only 3-D NuMuCC pixel maps
The 100x100x100 pixel maps are cropped to 32x32x32 centered at their vertices

Provided similar performance compared with the regular 3-D CNN
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PointNet on Direction Reconstruction

PointNet is trained on un-cropped
full-event 3-D NuMuCC pixel maps
o 186 hits on average
Picked 100 hits (points) with the highest
energy deposit
o PointNet requires the fixed number of points per
input
o Events having fewer than 100 hits are discarded
o  Only ~50% events (with more hits) are kept

The performance of PointNet could be
limited by the number of points per input

o Regularly, the number of points per input should
be ~2000
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Summary of Efficiency-oriented Models

e Two efficiency-oriented models have Worst

been explored ; DUNE Simulation !

o SSCN and PointNet f P — ] fg

o Both sacrifice the accuracy, in different Am;_ . —  SSCN —;40 el
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Current Status

e 3-D RegCNN provides comparable performance on vertex reconstruction

o NuECC
m Full-event RegCNN performs similarly to the standard method
m Prong-only RegCNN performs similarly to the standard method

e Efficiency-oriented models improved the computation and memory efficiency

but sacrificed the accuracy

o Except, SSCN provides better memory efficiency to the 3-D RegCNN but doesn't sacrifice
much accuracy



Future Work

e Improve the computational efficiency of SSCN on 3-D pixel maps

e Improve the performance of vertex reconstruction using 3-D RegCNN
o 2-stage training on fine-grained pixel maps



Thank you!



