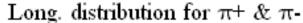
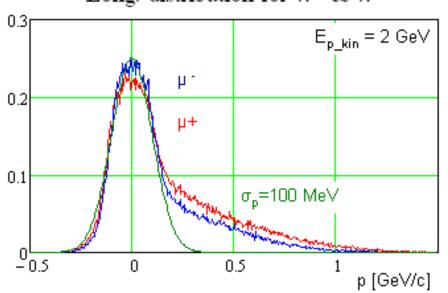


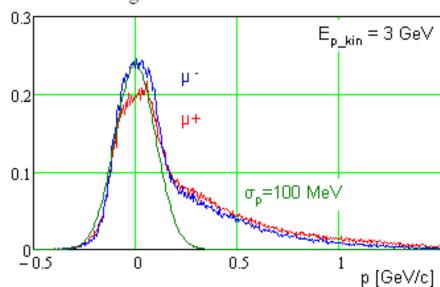
Muon Task Force

Valeri Lebedev Sergei Striganov and Vitaly Pronskikh


> Project X Collaboration Meeting Fermilab October 25-27, 2011


Objective

- Project X can deliver ~1 MW beam
 - \bullet Factor ~40 larger than the power expected in μ -to-e
- How to use this power?
 - How should the target look like?
- Which additional possibilities for experiments can we obtain?
 - Achievable muon flux
 - What else can be done to improve experiments with stopped muons


Pencil-like target

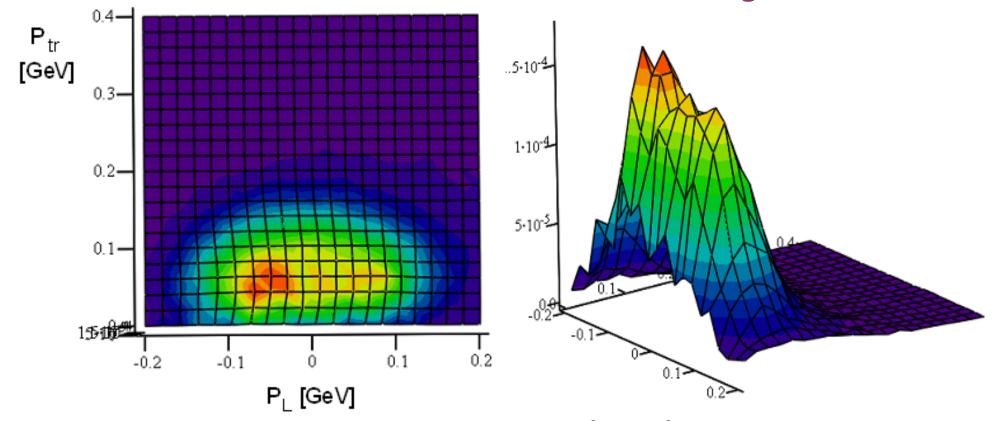
Pion distribution over momentum for Nickel target

Long. distribution for π + & π -

Longitudinal distribution function $(df/dp_{||})/E_{p_kin}$ [c/GeV²]

Nickel cylinder, L=10 cm, r=0.4 cm; no magnetic field

Total production per unit energy of incoming protons


Ekin=2 GeV: forward 5.3% p_GeV⁻¹; backward - 2.9% p_GeV⁻¹

Ekin=3 GeV: forward 6.3% p_GeV⁻¹; backward - 2.8% p_GeV⁻¹

- Longitudinal pion distribution is close to the Gaussian one, $\sigma_p \approx 100$ MeV/c
- Central part of distribution has weak dependence on the incoming proton energy in the range [1-8] GeV
 - High energy tail grows with proton energy

Pencil-like target (continue)

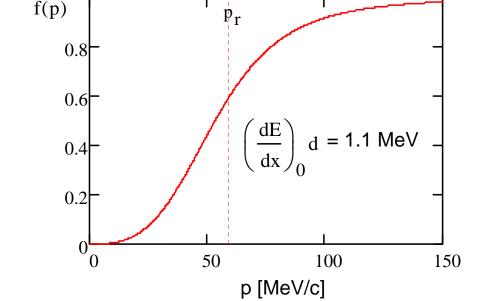
Pion distribution over momentum for Nickel target (continue)

Pion distribution over momentum, d^3N/dp^3 , Nickel cylinder, L=10 cm, r=0.4 cm; no magnetic field

 Distribution function approaches zero due to particle deceleration at the target surface

Pion deceleration due to ionization lass

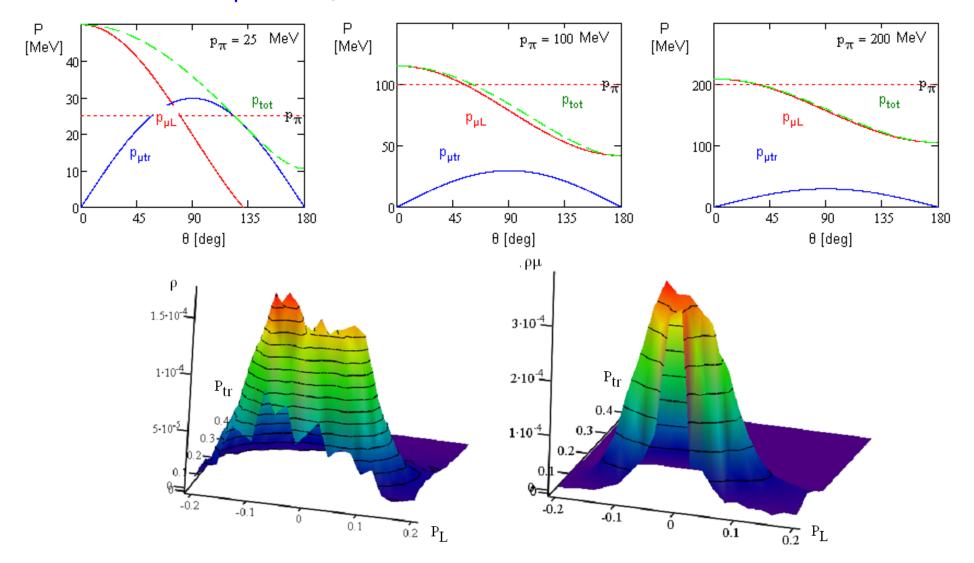
For $\gamma\beta \in [0.1, 1]$ one can write $\frac{dE}{dx} \approx \frac{1}{\beta^2} \left(\frac{dE}{dx}\right)_0$


For non-relativistic case $E = m_{\pi}c^2\beta^2/2$ \Rightarrow $p_{fin}^4 \approx p_{in}^4 - 4m_{\pi}^3c^2\left(\frac{dE}{dx}\right)_0L$

Distribution function change is: $f(p_{fin}) = \frac{f(p_{in})}{dp_{fin}/dp_{in}}$

Combining one obtains:

$$f'(p_{\mathit{fin}}) \propto p_{\mathit{fin}}^{-3} / \left(p_{\mathit{fin}}^{-4} + p_{\mathit{r}}^{-4}\right)^{3/4}$$


where: $p_r \approx \sqrt[4]{4m_\pi^3 c^2 L (dE/dx)_0/c}$

- p_r has comparatively weak dependence on medium properties $(dF/dx) \approx 1.6 \text{ MeV/(a/cm}^2)$: $n \approx 1 \text{ MeV/(a/cm}^2)$
 - $(dE/dx)_0$ ~1.6 MeV/(g/cm²)); $p_r \approx 1$ MeV/c for $L \approx 1$ mm

Muon distribution over momentum

- After decay a muon inherits the original pion momentum with Δp correction depending on the angle of outgoing neutrino, Δp_{cm} =29.8 MeV/c
- For most of pions (p > 60 MeV/c) a decay makes a muon with smaller p
 - \Rightarrow Momentum spread in μ -beam is smaller than in π -beam

Phase Density and Emittance of Muon Beam

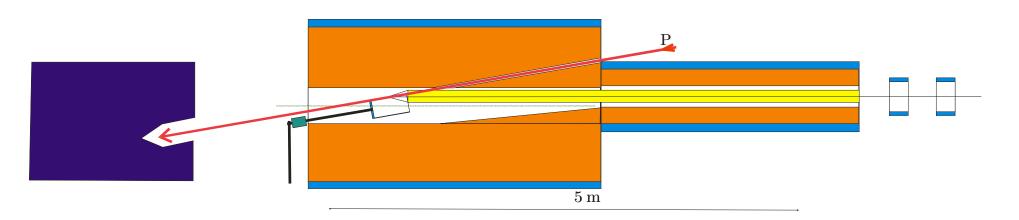
Pions

For short target, $L_{targ} < F$, (antiproton source)

$$\beta_{opt}^* \approx \frac{L_{targ}}{6} \approx \frac{E_{targ}}{6} \sigma_{\theta}^2$$

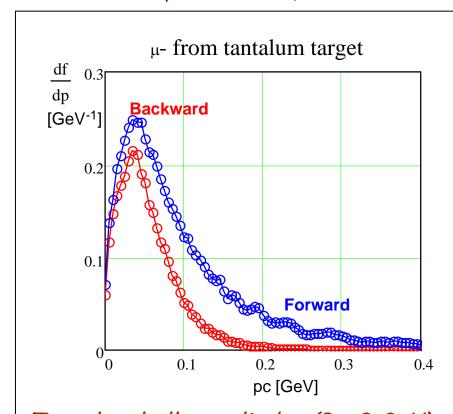
- lacktriangle For small energy pions this approximation does not work, i.e $L_{ ext{rarg}} \geq eta$
 - ♦ In this case

•
$$\varepsilon \approx \beta \sigma_{\theta}^2$$
 where $\beta = \frac{2pc}{eB}$


- and beam emittance does not depend on the target length
- ⇒ Phase density of pions is proportional to the magnetic field

Muons

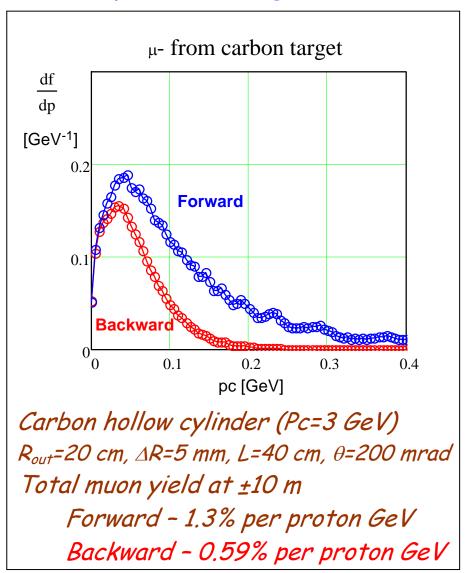
- To reduce emittance growth due to pion decays the pions are transported in a solenoidal magnetic field
- Pions are produced in the solenoid center
 - ⇒ they have small angular momentum
- Pion decays have little effect on the angular momentum and the beam emittance
 - ⇒ Phase density of the muons is proportional to pion density and, consequently,
 - ⇒ the number of muons in given phase space is proportional to the magnetic field
 - ⇒ and muons do not have x-y correlations after exiting the solenoid


Muon yield from cylindrical target

- Large beam power prohibits to use pencil-like target in high power application with small energy beam (few GeV)
 - Liquid jet-target is intellectually attractive but has severe problems with safety and repairs
- Cylindrical rotating target looks as the most promising choice
 - Carbon (graphite) and tantalum targets were considered

Muon's longitudinal distribution (per 1 GeV of proton energy)

- \blacksquare 3 GeV/c (E_{kin} =2.2 GeV) proton beam (this choice is supported by measurements)
 - \bullet $\sigma_x = \sigma_y = 1$ mm parallel beam, proton multiple scattering unaccounted

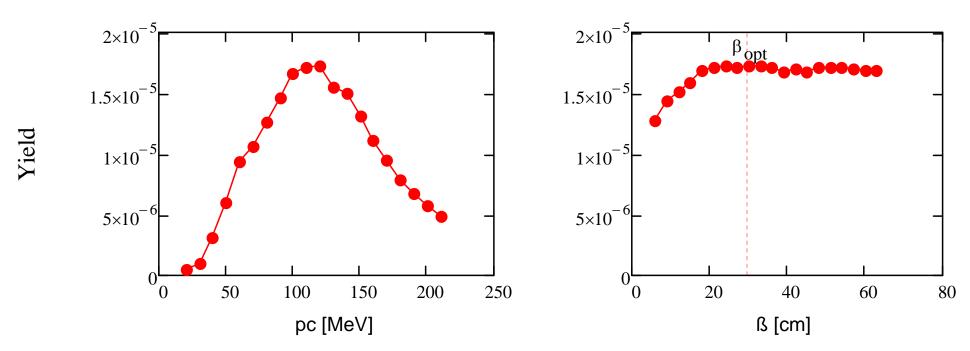


Tantalum hollow cylinder (Pc=3 GeV) R_{out} =20 cm, ΔR =5 mm, L=16 cm, θ =300 mrad

Total muon yield at ±10 m

Forward - 1.4% per proton GeV

Backward - 0.73% per proton GeV

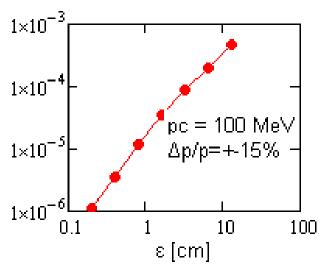

Small difference between forward and backward muons for Pc<50 MeV</p>

Muon's longitudinal distribution (contunue)

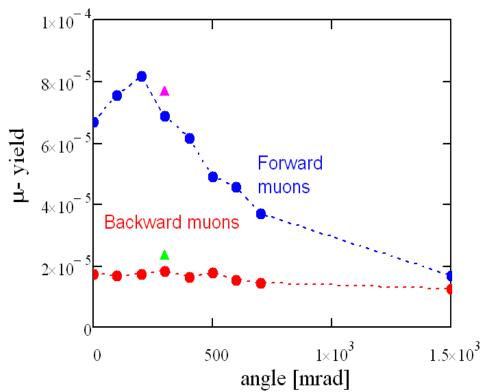
- Compared to a pencil like target a hollow cylinder target has smaller muon yield by more than factor of 2
 - ♦ But it allows one to use much larger beam power
- For pc < 100 MeV the carbon target has smaller yield but
 - Less problems with cooling due to larger length
 - ♦ It also makes less neutrons
- Beam damp inside solenoid would be a formidable problem therefore below we assume:
 - Backward muons
 - Carbon target
- We also assume the proton energy of 2.21 GeV (this choice is supported by experimental data)
 - For E_{kin}∈[2, 8] the production of slow muons per unit beam power weakly depends on the beam energy

Muon yield into a beamline with finite acceptance

- In some applications beam transport in a beam line is desirable
- It allows
 - Isochronous transport preventing beam lengthening
 - ♦ but it significantly reduces the acceptance and momentum spread
- Below we assume that the beam line limits maximum acceptance and momentum spread to $\epsilon \approx 0.3-3$ cm, $\Delta p/p \approx \pm 0.15$
 - lacktriangle Beam line can be matched to decay solenoid to maximize the capture $\Rightarrow eta_{opt}$


Graphite cylindrical target, backward muons, $\varepsilon_x = \varepsilon_y = 1$ cm, $\Delta p/p = \pm 0.15$, $\theta = 200$ mrad, B=2.5 T.

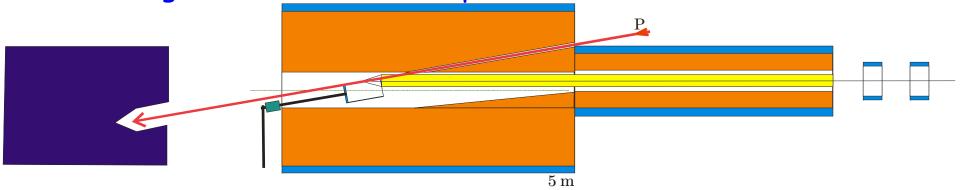
- For small emittance the dependence of muon yield on β -function is weak
- Strong suppression of small energy muons (pc<50 MeV) by deceleration in medium</p>


Muon yield into the beamline finite acceptance (continue)

- Absence of x-y correlations after beam exit from magnetic field requires axial symmetric exit from solenoid ⇒ i.e. the beam center has to coincide with solenoid axis
- Yield is proportional to B_{target}
 - ♦ $2.5 T \rightarrow 5 T$ would double the yield
- Yield is $\propto \Delta p/p$ (for $\Delta p/p \ll 1$)
- Yield is $\propto \epsilon^{1.5}$

Yield, C cylinder, backward µ

Capturing the beam in a beam
 line reduces the muon flux by about 2 orders of magnitude



Dependence of muon yield on target angle relative to magnetic field for carbon target into the following phase space: $\varepsilon_x = \varepsilon_y = 1$ cm, $\Delta p/p = \pm 15\%$,

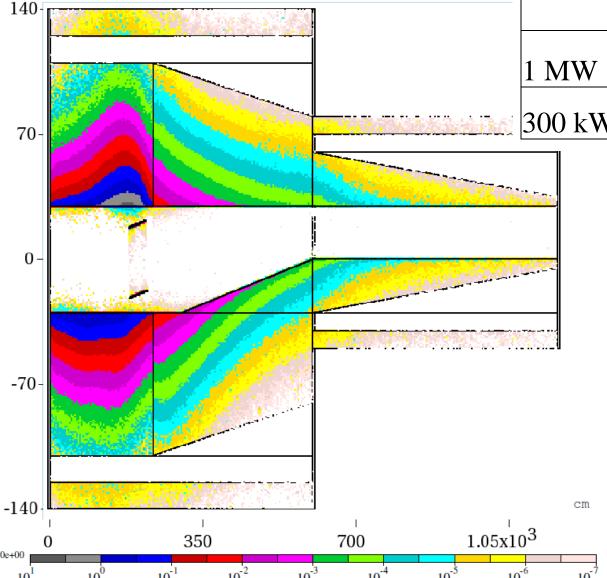
Optimal momenta are: 100 MeV/c for backward and 200 MeV/c for forward muons
Triangles show results for tantalum target

Target

- The target length should be ~1.5 of nuclear interaction length
 - ⇒ Carbon ~60 cm
 - ⇒ Tantalum ~15 cm
- The beam leaves ~10% of its energy in the target;
 - \Rightarrow ~100 kW for 1 MW power
 - ♦ 90% goes to the beam dump

Relative to pulsed beam the CW beam drastically reduces stress in target

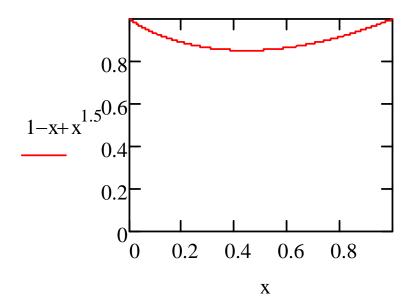
Target cooling


- For 1 MW beam power the power left in the target is ~ 100 kW
 - ♦ Heat cannot be removed from pencil target: dP/dS~2 kW/cm² for R~0.5cm
 - Relative to this an oxidation and repairs look as an easy problem
- Two possibilities
 - ◆ Liquid metal stream (muon collider)
 - Looks expensive
 - Reliability, safety and repair issues
 - Rotating cylinder cooled by black body radiation
 - PSI uses a rotating graphite target at 1 MW beam power
 - Tantalum, R=10 cm, d=0.5 cm, L=15 cm, 400 rev/min
 - ⇒ $T \approx 3000$ K (melting T = 3270 K), $\Delta T \approx 50$ C
 - Graphite (C), R=10 cm, d=0.5 cm, L=40 cm, 60 rev/min
 - ⇒ $T \approx 1800$ K (melting T = 3270 K), $\Delta T \approx 50$ C
 - For C temp. looks OK but we still have to address
 - ⇒ Bearing lifetime under radiation (rotation)
- Any solution requires vacuum windows to separate target from the beam => 1 MW windows
 - Do we need to have the target in vacuum?

Effects of radiation

Shielding estimate

C[t] / W[t] /Rmax [cm]


This preliminary absorber design satisfies typical requirements for SC coils

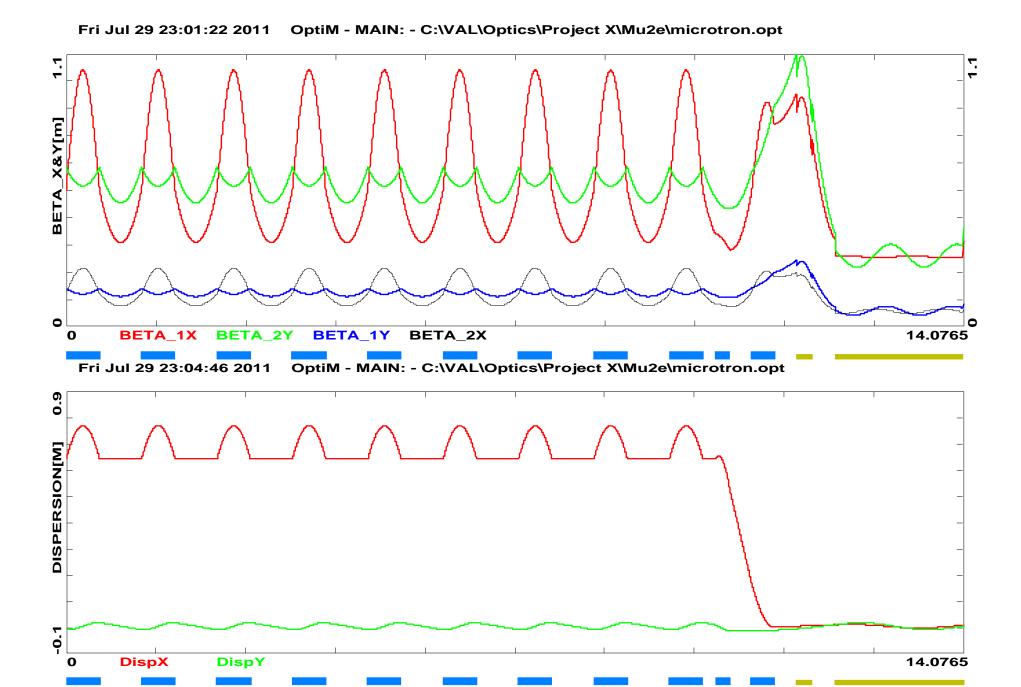
- peak DPA 10⁻⁵ year⁻¹)
- power density (3 μW/g)
- absorbed dose 60 kGy/yr
- Dynamic heat load is 10 W

Transition from 25 kW of μ -to-e to 1 MW increases the shield radius from ~80 cm 110 cm => B=5 T \rightarrow 3 T for the same stored energy

Multiple scattering of protons in the target

- Multiple scattering limits the thickness of cylindrical target to a few millimeters
- Optimal target thickness is weakly affected by its material
 - Heavy target has larger scattering but is shorter
 - It has approximately the same overall effect on the beam envelope growth due to multiple scattering
- Small proton beam emittance in Project X allows some reduction of multiple scattering effects
 - the beam is focused to the small spot at the target end

Beam transport in Helical Transport Line

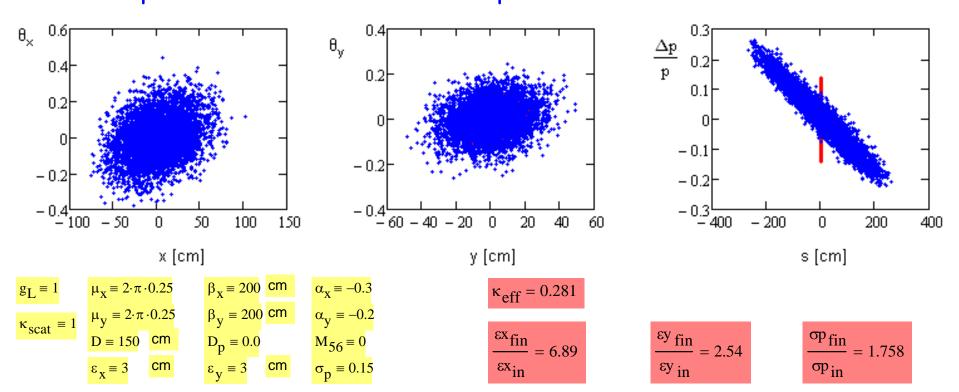

- If isochronicity of beam transport is required then the beam transport in a "standard" line is the only choice
- The line may consist of downward spiral
 - It is matched to the production and detector solenoids with two dipoles and one or two solenoids at each end
- Toy example
 - One revolution includes 4 dipole magnets: B=5 kG (Pc=50 MeV), L=52.3 cm,
 R=33.3 cm, gap 13 cm, good field region width: ±15 cm
 - ♦ The line acceptance 0.41 cm; Momentum spread ±0.15, it descends with angle of 2.591 deg, step of the helix is 23.973 cm
 Fri Jul 29 23:06:19 2011 OptiM MAIN: C:\VAL\Optics\Project X\Mu2e\microtron.opt

Detailor Project. [cm]

O Ax Ay AlphaXY

14.0765

Betatron beam envelopes for helix and match to the detector solenoid. Acceptance 0.41 cm

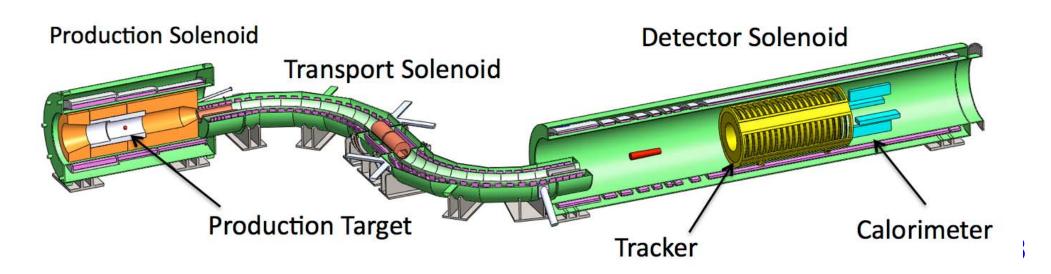

4D beta-functions (top) and dispersions (bottom) for helix and match to the detector solenoid

Beam transport limitations

- To match the yield requirement of ~10⁻⁴ we need to have a line with acceptance of ~3 cm (backward muons from carbon target)
 - Similarity of optics yields: $\epsilon \propto a \propto \beta_{x,y} \propto R_o$
 - Isochronicity requires soft focusing, $Q_x \sim 1$
 - ◆ Magnetic fields are reduced with increase of R₀ making magnet price affordable
 - ◆ Total length and number of turns is determined by required pion extinction (~70 m for 50 MeV/c and extinction of 10⁻¹⁴)

Possibilities with Deceleration

- Deceleration in electro-magnetic structure results in the adiabatic antidumping, with consequential 6D emittance growth \propto p⁻³, i.e. 8 times for every factor of 2 in momentum
- Deceleration in the material looks much better at large p (p \geq m_{μ}) but behaves the same way (\propto p⁻³) for non-relativistic particles
 - \bullet even worse than it if multiple scattering is important (large $\beta_{x,y}$ at absorber)
 - Redistribution of damping decrements in realistic simulation partially helps but does not address the problem

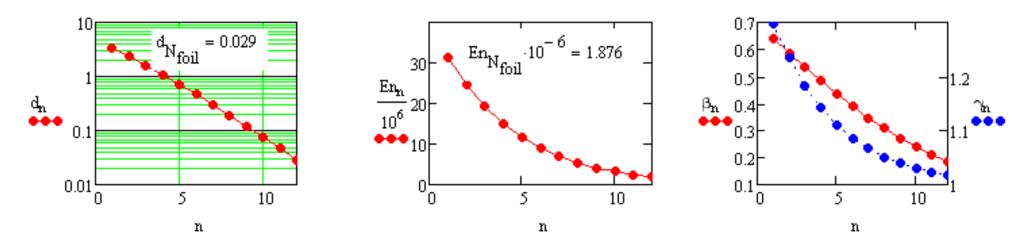

Conclusions

- \blacksquare μ -to-e in Project X
 - ◆ Using graphite rotating target we lose factor of ~2 in muon yield
 - ◆ Larger radius of radiation shield reduces magnetic field by ~2 times
 - ♦ That results in that to get the same yield ~100 kW is required
 - ♦ 1 MW available in the Project X can increase the muon flux by ~10 times
 - Its optimal use need to be investigated
- Beam line option
 - Sufficiently large muon flux accepted into a beam line can be achieved for muons with momenta ~100 MeV (E_{kin} =40 MeV)
 - If required the line can be done isochronous
 - Slow muons for stopping in a thin target
 - Phase density of muons at low energy is reducing fast
 - Deceleration results in about the same yield decrease as the direct capture would do
 - Beam ionization cooling with acceleration is expensive. Its usefulness requires additional study
 - Small emittance of Project X beam will be helpful
 - ⇒ Convergent beam
 - ⇒ Mitigation of multiple scattering for protons in the target

Backup Slides

Present μ-to-e

- Conversion $2.1 \cdot 10^{-3}$ (dN_p/dt= $2.4 \cdot 10^{13}$ s⁻¹, P=25 kW, dN_µ/dt= $5 \cdot 10^{10}$ s⁻¹)
- Extinction $<10^{-10}$ (sensitivity $6\cdot10^{-17}$ (90% C.L.))
- Target (gold, L~16 cm, r=0.5 cm, water cooled)
 - Total power 25 kW
 - Power left in the target 2 kW
- Secondary target
 - \bullet 17 Al discs, 0.2 mm thick, 5 cm apart, tapered radii r_d = 8.3 \rightarrow 6.53 cm
- Magnetic fields
 - Production solenoid: 5T -> 2.5 T, internal radius 0.75 m (reflection of muons)
 - ◆ Transport solenoid 2 T
 - \bullet Detector solenoid: 2T -> 1T (reflection of electrons with negative $p_{||}$)

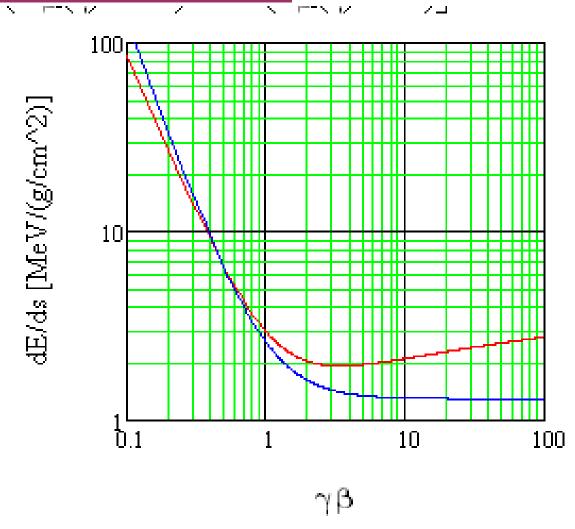


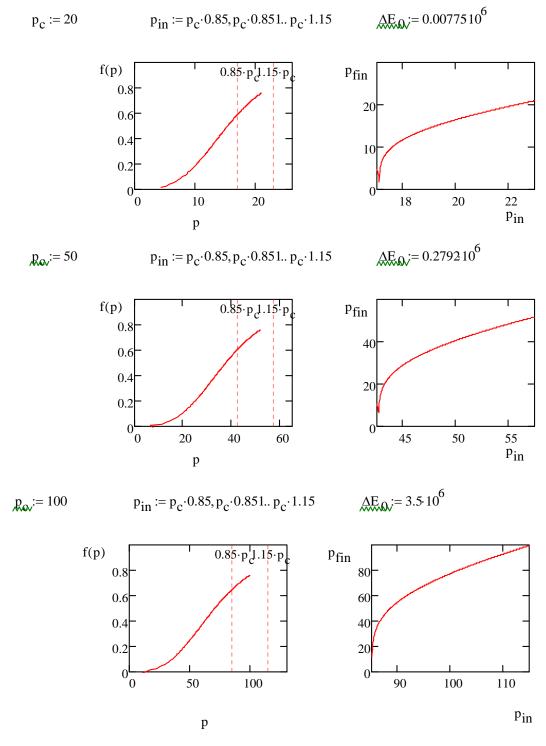
Major Requirements to a New Generation μ -to-e Experiment

- \sim 100 times better than μ -to-e
 - ♦ single event sensitivity 2·10⁻¹⁹ (or 6·10⁻¹⁹ at 90% CL)
 - \Rightarrow 5·10¹⁸ muons: 2 years of 2·10⁷ s each
 - \Rightarrow 5·10¹² muons/s
 - ◆ Pc < 20 MeV i.e. E_{kin}<1.9 MeV (stopped in 0.4 mm Al foil)</p>
 - ♦ Extinction <10⁻¹⁴ for pions; no antiprotons
 - ♦ Short pulse: t < 10 ns
 - Detector is located underground (≥12 m)
- Short pulse and very good extinction imply that the beam transport has to be in an isochronous beam line
 - Drastic reduction of transverse and longitudinal acceptances
 - ⇒ 1 MW Project X power should be helpful
- Limitation of maximum energy to <1 MeV points out to the muon deceleration as a possible choice

[†] Bernstein & Prebys, July 26, 2011

Deceleration from 100 to 20 MeV/c




Foil thickness [cm], energy [MeV] and $\beta \& \gamma$ as functions of foil number for $\Delta p/p = 0.15$ per foil

Difficulty to control wedging at thickness below ~1-2 mm

Muon Task Force, Valeri Lebedev

<u>Deceleration in LiH</u>

<u>Deceleration of +-15%</u> <u>momentum bite</u>