The Project-X Research Program

Neutrino long-baseline and short-baseline experiments

A high-power proton source with proton energies between 8 and 120 GeV would produce intense neutrino beams directed toward near detectors on the Fermilab site and massive detectors at distant underground laboratories.

Kaon, muon, nuclei & neutron precision experiments

These could include world leading experiments searching for muon-to-electron conversion and other rare muon processes, nuclear and neutron electron dipole moments (edms) & fundamental physics, and world-leading precision measurements of ultra-rare kaon decays.

Platform for evolution to a Neutrino Factory and Muon Collider

Neutrino Factory and Muon-Collider concepts depend critically on developing high intensity proton source technologies.

Nuclear Energy Applications

Accelerator, spallation, target and transmutation technology demonstration which could investigate and develop accelerator technologies important to the design of future nuclear waste transmutation systems and future thorium fuel-cycle power systems.

Detailed Discussion: <u>Project-X website</u>

Project X: 5 MW Proton Accelerator

Project-X High-Intensity Campus

Project-X Beam Parameters provided to IFW chairs

Project X (2022-202X)

120 G	eV Fast Spill		
	120 GeV Beam Power	2400	kW
	Protons per pulse	1.6×10^{14}	
	Pulse length	9.5	µsec
	Number of bunches	504	
	Bunch spacing	18.9	nsec
	Bunch length (FWHM)	2	nsec
	Pulse repetition rate	1/1.3	Hz
8 GeV	⁷ Fast Spill*		
	8 GeV Beam Power	190	kW
	Protons per pulse	2.7×10^{13}	
	Pulse length	4.3	msec
	Bunch spacing	6.2	nsec
	Bunch length (FWHM)	20	psec
	Pulse repetition rate	7/1.3	Hz

Project-X Beam Parameters provided to IFW chairs

3 GeVSlow Spill3 GeVBeam Power2900Bunch StructureProgrammable*Protons per bunch (Max) 1.9×10^8 Bunch spacing6.2Bunch length (FWHM)40Pulse repetition rateCW*

An Incomplete Menu of World Class Research Targets Enabled by Project-X

Project X at the neutrino working group Monday Oct 24th

- Well represented, good understanding of Project X capability, many creative ideas to exploit beam power.
- Some confusion about available 8 GeV beam power in the Project-X design. This is 190 kW for coincident 120 GeV MI running at 2300 kW, and progressively less (down to 50kW) for coincident MI running at 60 GeV.
- There is growing interest in 8 GeV beam power. The Intensity Frontier Workshop should survey community interest and the Project-X can respond with consideration of an 8 GeV beam power upgrade.
- A ongoing task-force (Muon Collider task force) has developed a concept for 4000kW at 8 GeV which could greatly benefit LBNE. This is currently not in the Project X scope.

An Incomplete Menu of World Class Research Targets Enabled by Project-X. continued...

Muon Physics:

- Next generation muon-to-electron conversion experiment, new techniques for higher sensitivity and/or other nuclei.
- >Next generation $(g-2)_{\mu}$ if motivated by next round, theory, LHC. New techniques proposed to JPARC that are beam-power hungry...
- ≽µ edm
- ≽µ→3e
- $\succ \mu^+ e^- \rightarrow \mu^- e^+$
- $\succ \mu^{-}A \rightarrow \mu^{+}A' ; \mu^{-}A \rightarrow e^{+}A' ; \mu^{-}e^{-}(A) \rightarrow e^{-}e^{-}(A)$

>Systematic study of radiative muon capture on nuclei.

An Incomplete Menu of World Class Research Targets Enabled by Project-X. continued...

Kaon Physics:

 $ightarrow \mathbf{K}^+ \rightarrow \pi^+ v \overline{v}$: >1000 events, Precision rate and form factor. $ightarrow K_{L} \rightarrow \pi^{0} v \overline{v}$: 1000 events, enabled by high flux & precision TOF. $ightarrow \mathbf{K}^+ \rightarrow \pi^0 \mu^+ \nu$: Measurement of T-violating muon polarization. $\succ K^+ \rightarrow (\pi,\mu)^+ v_{\star}$: Search for anomalous heavy neutrinos. $> K^{\circ} \rightarrow \pi^{0}e^{+}e^{-}$: <10% measurement of CP violating amplitude. $ightarrow K^{0} \rightarrow \pi^{0} \mu^{+} \mu^{-}$: <10% measurement of CP violating amplitude. $\succ K^{\circ} \rightarrow X$: Precision study of a pure K⁰ interferometer: Reaching out to the Plank scale ($\Delta m_{\kappa}/m_{\kappa} \sim 1/m_{P}$) $> K^{\circ}, K^{+} \rightarrow LFV$: Next generation Lepton Flavor Violation experiments ...and more

An Incomplete Menu of World Class Research Targets Enabled by Project-X. continued...

-Possible Day-1 Experiment

Nuclear Enabled Particle Physics:

Production of Ra, Rd, Fr isotopes for nuclear edm experiments that are uniquely sensitive to Quark-Chromo and electron EDM's.

Baryon Physics, some of a long list:

> pp → Σ^+ K⁰p⁺; Σ^+ →p⁺ μ^+ μ^- (HyperCP anomaly, and other rare Σ^+ decays)

> pp → K⁺ Λ^{0} p⁺; Λ^{0} ultra rare decays

neutron - antineutron oscillations

> Λ⁰↔ Λ̄⁰ oscillations (Project-X operates below anti-baryon threshold)
 > neutron EDMs

US Nuclear Physics Facilities Allied With This Research Program

Some examples....

- SNS fundamental physics beam-line (nEDM experiment)
- ORNL, LBNL: source of relevant isotopes (eg ²²⁵Rn)
- JLAB: Dark photons searches.
- Facility for Rare Isotope Beams (FRIB, 2020 operations): No ISOL capability within current scope. Conceptual designs exist for ISOL upgrades, must share directly with radioactive beam base program.

How will this landscape be incorporated into the IFW report?

Some of the World-wide Facilities Competing for the Project-X Research Program

- Neutrinos: CERN, JPARC
- Rare processes: CERN, JPARC, PSI, JLAB
- Neutron edms, n-nbar: Institut Laue-Langevin, (ILL) ; Paul Scherrer Institute (PSI)
- ISOL facilities: Many world-wide. Very active field.

How will this landscape be incorporated into the IFW report?

JPARC plan post earthquake

Operational Plan for JFY2012 and JFY2013

ICFA Seminar Intensity Frontier Matrix October 2011

Running facilities In Construction Proposed/planned facilities Exp. Input Needed (not used)		NL/RHIC	RN FT/LHC	rmilab/BO	rmilab/MI	Protvino U70	SEPC/BES	PHNE/KLOE EK/BELLEII	SuperB	SuperK	Kamland	JPARC	ab 12 GeV	EIC	GSI/FAIR	ubna/NICA	SNOLAB	le Beta Decay	Reactors	SUSEL	LBNE	<pre>\L/Project X</pre>	RN/LBNO	u Factory	au Factory	-B Upgrade
	ТОРІС	-	CE	Fe	Fe	IHEP		KI					ſ			ם		Doub				FNA	IJ	2	с.	Ĕ
QCD	Nucleon Structure																									
QCD	Spin and Semi- Inclusive																									
QCD	High E Phen.			_																						
QCD	Hadron Spectroscopy																									
Heavy lons	Phase Trans Critical Pt																									
Heavy lons	QGP at high Temp																									
Heavy lons	Color Glass C, Sat, IS																									
Neutrinos	Neutrino Mixing																									
Neutrinos	Neutrino Masses																									
Neutrinos	Chort Baseline Osc																									
Quark Elavor	CKM Vub. dKM																									
Quark Flavor	BSM in loops (K)																									
Quark Flavor	BSM H+																									
Quark Flavor	LFV tau																									

H. Montgomery

ICFA Seminar Precision Intensity Frontier Matrix October 2011

						University labs & reactors
T-Violation	EDM PSI	EDM PSI	EDM BNL, COSY, FNAL, J-PARC, PSI, RCNP, SNS, TRIUMF			EDM, nnpd
Charged lepton flavor violation	MFVD PSI	MFVD FNAL, J-PARC	MFVD FNAL, J-PARC, PSI, RCNP			
New flavor conserving interactions		g-2 FNAL, J-PARC	g-2 FNAL, J-PARC	Qweak J-LAB	PVES, g-2 J-LAB, MAMI, Super(KEK)B, BINP	g-2
New charged current interactions	nnpd J-PARC, LANL, PSI	nnpd	nnpd PSI, SNS, TRIUMF			nnpd
Bound state QED, CPT	exat CERN, PSI	exat CERN, PSI	<mark>exat</mark> CERN, J-PARC, PSI			atoms and ions
Other exotic interactions	DPA cern			DPA desy, j-lab, mami	DPA desy, j-lab, mami	DPA

H. Montgomery

>40 Intensity & Precision Frontier facilities world-wide pursuing particle physics science and closely aligned nuclear physics science.

ICFA Seminar Energy Frontier Matrix October 2011

Topic/Facility	RHIC	Tevatron	LHC	LHC High Lum.	Linear Collider <500 GeV	LHeC	Linear Collider > 500 GeV	LHC High Energy	μ-Collider
QCD/EW Meas.									
Higgs									
SUSY									
Other BSM									
QGP Prop High T									
Color Glass C, Sat, IS									

H. Montgomery

This Science has attracted Competition: The Proton Source Landscape This Decade...

The High Duty Factor Proton Source Landscape This Decade...

* Beam power x Duty Factor

Chopping and splitting for 3-GeV experiments

<u>1 μsec period at 3 GeV</u>

 Muon pulses (16e7) 81.25 MHz, 100 nsec at 1 MHz
 700 kW

 Kaon pulses (16e7) 20.3 MHz
 1540 kW

 Nuclear pulses (16e7) 10.15 MHz
 770 kW

Ion source and RFQ operate at 4.2 mA 75% of bunches are chopped at 2.5 MeV after RFQ

Beam after splitter

