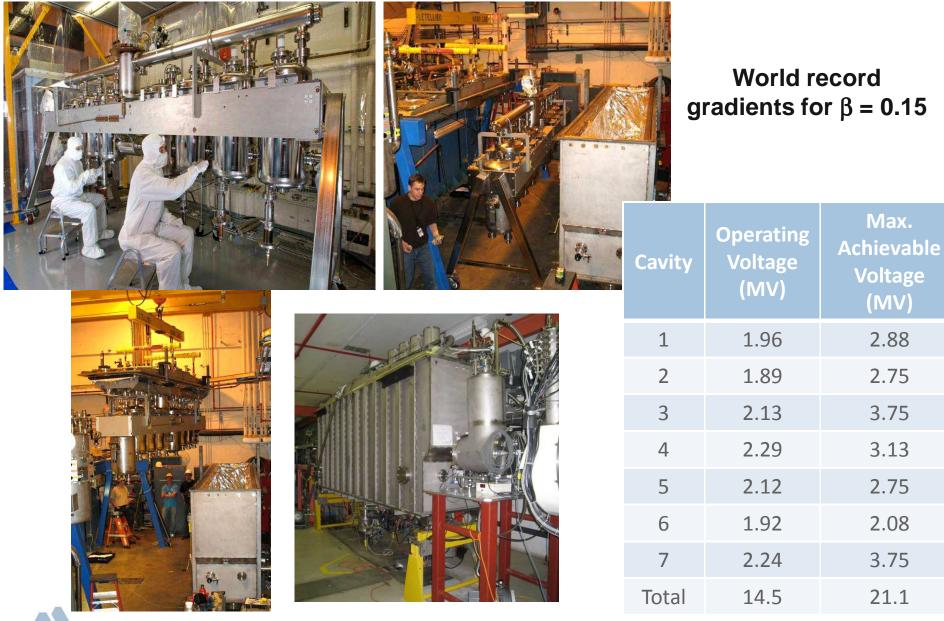

Concepts for the Cryomodule Design: 2K Operation, Alignment System, Solenoids, BPMs, vacuum/cryogenic/pressure safety

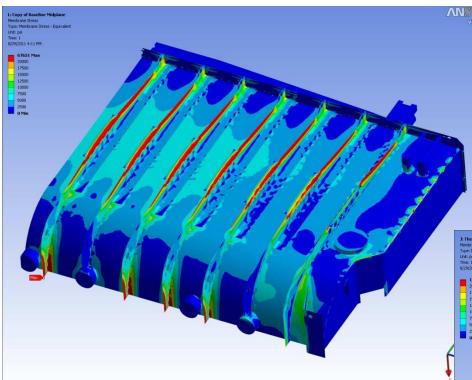
Zachary Conway on behalf of the ANL Linac Development Group October 26, 2011


Outline

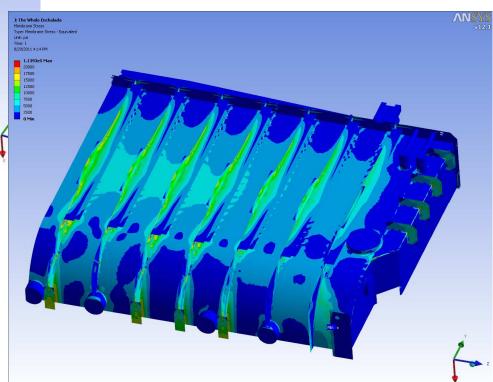
- Recent Experience: ANL ATLAS Upgrade Cryomodules
- Design Parameters
- Conceptual Cryomodule Layout
- Future Work

- 7 β = 0.15 109 MHz SC quarter-wave cavities and 1 SC solenoid
- 14.5 MV gain in 4.5 m, limited by VCX fast tuners, 21.1 MV would be limit if VCX did not limit cavities
- Very similar to the high-beta 109MHz cryomodule for SARAF Phase-II.
 - Phase II will need ~7 SC QWR and 4 SC solenoids

ANL ATLAS Energy Upgrade Cryomodule



ANL ATLAS Intensity Upgrade Cryomodule


- 4 superconducting solenoids
- 7 β = 0.075 72.75 MHz quarter-wave cavities
- Work will be complete in 2012

ANL ATLAS Intensity Upgrade Cryomodule

- Everything in red is above 20 ksi
- 20 ksi is the maximum allowable stress for 304/304L which meets SA-240
- Similar modeling is performed
 for secondary stresses

- ARRA Intensity Upgrade was designed to satisfy the DOE Vac. Vessel Consensus Guidelines
- These models are of the primary membrane stresses

FNAL PXIE HWR Cryomodule Design Parameters

Material	Young's Modulus (KSI)	Poisson's Ratio	Density (lbs/in³)	Maximum Allowable Stress (KSI)
Niobium	15,200	0.395	0.3096	4.4
304 Stainless Steel	29,000	0.270	0.286	20.0
Titanium, Grade 2	16,600	0.300	0.164	27.0

- We will design the cavity helium space to equivalent levels of safety per the ASME B&PV code and TD-09-005
- The helium plumbing in the cryomodule will also be design to the ASME B&PV code equivalent levels of safety
- 304 S.S. maximum allowable stress come from the ASME B&PV code Table 5B Section VIII, Division 2, Maximum Allowable Stress Values for Ferrous Materials.
- The Titanium, Grade 2, maximum allowable stress value is 0.8 of the 0.2% yield strength, per FNAL TD-09-005.
- We need someone who can speak for FNAL safety to interface with us early in the design of the cryomodule.

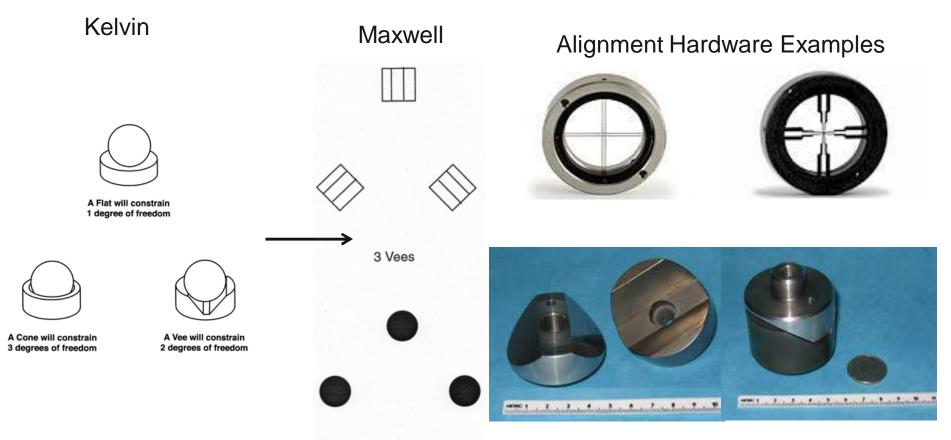
Cryomodule Concept

- Lattice: Cavity-Solenoid-C-S-C-S-C-S-C-S-C-S-C-S-C
- BPMs not shown; concept shown later
- Vacuum vessel design will comply with DOE vacuum vessel consensus guidelines.

2								
8	Cryogenic Loads							
	Load to 70 K	250 W						
	Load to 5 K	<20 W						
	Load to 2 K	<30 W (<20W FNAL)						

5.9 m (<5.7 m) x 1.6 m (<1.6 m) x 1.5 m (FNAL Initial Spec) With the beam height = 1.3 m the top of the lid will be at 2.0 m (<2.00 m) from the floor

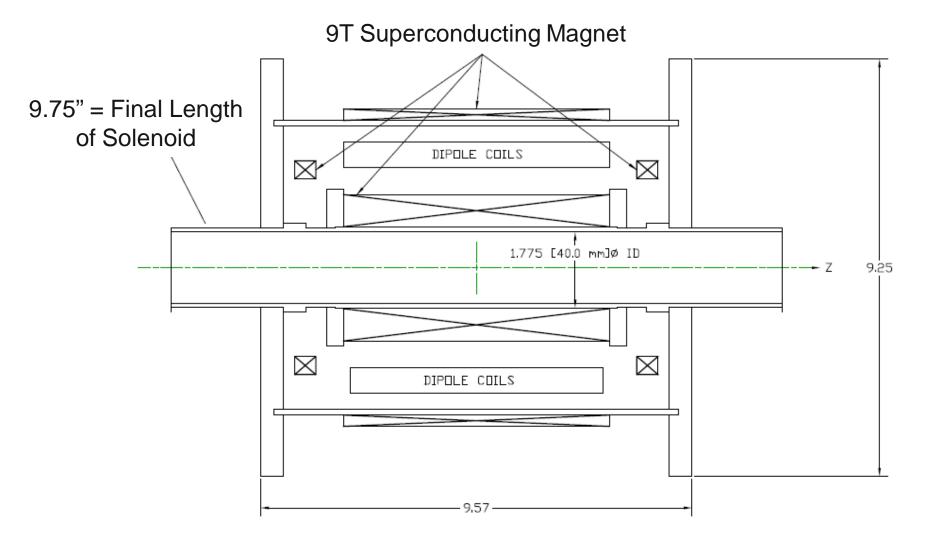
Cavity Dimensions


Concept Cavity Dimensions					
ength (Along Beam Line)	0.28 m				
Large OD	0.39				
Width	1.22 m				

Cavity and Solenoid Alignment

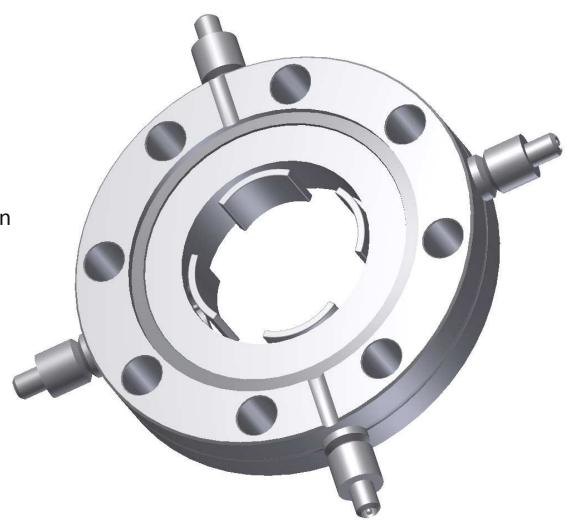
	3					
ATLAS	Energy Upgrade	Intensity Upgrade	FNAL			
±1	±0.25	±0.25	±0.25		-	
±1	±0.25	±0.25	±0.25	Yaw Axis	0	
±1	±1	±1	±1		У у	
±0.5 ⁰	$\pm 0.1^{0}$	$\pm 0.1^{0}$	±0.1 ⁰			
±0.5 ⁰	$\pm 0.1^{0}$	±0.1 ⁰	±0.1 ⁰			
$\pm 0.5^{0}$	$\pm 0.5^{0}$	$\pm 0.1^{0}$	±0.1 ⁰			
			F		A Coordinate Sv	X Pitch Axis
	ATLAS 1 ±1 1 ±1 1 ±1 1 ±0.5 ⁰ 1 ±0.5 ⁰	ATLAS Energy Upgrade ±1 ±0.25 ±1 ±0.25 ±1 ±1 ±0.5° ±0.1° ±0.5° ±0.1°	ATLASEnergy UpgradeIntensity Upgrade ± 1 ± 0.25 ± 0.25 ± 1 ± 0.25 ± 0.25 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 $\pm 0.5^0$ $\pm 0.1^0$ $\pm 0.1^0$ $\pm 0.5^0$ $\pm 0.1^0$ $\pm 0.1^0$	ATLASEnergy UpgradeIntensity UpgradeFNAL ± 1 ± 0.25 ± 0.25 ± 0.25 ± 1 ± 0.25 ± 0.25 ± 0.25 ± 1 ± 1 ± 1 ± 1 $\pm 0.5^0$ $\pm 0.1^0$ $\pm 0.1^0$ $\pm 0.1^0$ $\pm 0.5^0$ $\pm 0.1^0$ $\pm 0.1^0$ $\pm 0.1^0$ $\pm 0.5^0$ $\pm 0.5^0$ $\pm 0.1^0$ $\pm 0.1^0$	Upgrade Upgrade Upgrade ±1 ±0.25 ±0.25 ±0.25 ±1 ±0.25 ±0.25 ±0.25 ±1 ±1 ±1 ±1 ±0.5° ±0.1° ±0.1° ±0.1° ±0.5° ±0.1° ±0.1° ±0.1° ±0.5° ±0.5° ±0.1° ±0.1° ±0.5° ±0.5° ±0.1° ±0.1° ±0.5° ±0.5° ±0.1° ±0.1° ±0.5° ±0.5° ±0.1° ±0.1° ±0.5° ±0.5° ±0.1° ±0.1° ±0.5° ±0.5° ±0.1° ±0.1° ±0.5° ±0.5° ±0.1° ±0.1°	ATLAS Energy Upgrade Intensity Upgrade FNAL ±1 ±0.25 ±0.25 ±0.25 ±1 ±0.25 ±0.25 ±0.25 ±1 ±1 ±1 ±1 ±0.5° ±0.1° ±0.1° ±0.1° ±0.5° ±0.1° ±0.1° ±0.1° ±0.5° ±0.1° ±0.1° ±0.1° ±0.5° ±0.1° ±0.1° ±0.1° ±0.5° ±0.1° ±0.1° ±0.1° ±0.5° ±0.1° ±0.1° ±0.1° ±0.5° ±0.1° ±0.1° ±0.1° ±0.5° ±0.5° ±0.1° ±0.1°

Alignment Hardware


3 Balls

- The Maxwell kinematic alignment arrangement is thermally stable since all three supports expand/contract in unison. It is used for high precision accelerator magnet positioning.
- We currently use the Kelvin arrangement which shifts the device being suport (leftright) during cooldown/warm-up.

Solenoids and BPMs


9 T, 2 K Solenoid Concept

We are still in discussions with vendors. This geometry is not final.

Compact BPM

- Small Compact BPM
- A device to test different electrodes is under construction
- Must be:
 - Compact
 - Cleanable
 - Couple to the beam for a useful SNR

Future Work

- Continue to develop the cryomodule as major subcomponent designs are complete:
 - 162.5 MHz β = 0.11 halfwave cavities
 - BPMs
 - Superconducting solenoids (however will not be longer than 9.75" along beam line)
- The ANL model of cryomodule design (would like to do this with FNAL safety):
 - Start project
 - Start talking to ANL pressure/vacuum safety representatives
- Have already constructively interacted with A. Klebaner with cryogenic supply/return issues and looking forward to other/future interactions
- Things look good. The path forward is clear.