

PXIE Optics and Beam Physics

Valeri Lebedev

Project X Collaboration Meeting Fermilab October 25-27, 2011

<u>Project X Injector Experiment - PXIE</u>

Goals

- Validate the Project X concept and eliminate technical risks
 - CW RFQ
 - Bunch-by-bunch chopper
 - Initial stage of acceleration in SC linac never tested in experiment † Complications can be due to beam loss of RFQ tails in SC linac
- Obtain experience in design and operation of SC proton linac
- Study limitations on the beam extinction
 - Official goal ~10⁻⁴
 - Is 10⁻⁹ 10⁻¹¹ achievable?
- It does not imply that the development of other high risk Project X items should be slowed down (SSR2, 2 types of elliptic cavities, ...)
- PXIE should deliver 1 mA CW beam to ~30 MeV energy

PXIE includes

LEBT, Ion Source and RFQ

Ion source: H-, 5 mA - DC, 30 kV (10 mA max cost)

LEBT

- goals
 - Optics match of ion source to RFQ
 - Differential pumping
- Features
 - LEBT chopper to reduce power at the beam dump of MEBT chopper
 - Space charge compensation
 - $\circ\,$ Should not be affected by LEBT chopper operation
 - \Rightarrow trapping & clearing electrodes
 - Instrumentation : emittance and beam current measurements

RFQ

- 2.1 MeV, 5 mA (10 mA compatible)
 - 10 kW @ 5 mA at the MEBT beam dump (tough if L~40 cm)
- ◆ 162.5 MHz
 - to make possible bunch-by-bunch chopping, 6.1 ns
- Bunch parameters @ RFQ exit
 - Norm. rms emittances < 0.25 mm for all planes (ϵ_L <0.78 eV· μ s)
 - Bunch population $1.9 \cdot 10^8 @ 5 mA$

MEBT

PXIE goal is to test all critical technologies, i.e. it's not a copy of Project X frontend

- Number of kickers for chopper is reduced from 4 to 2
 - Bunch by-bunch current regulation is not required
 - \Rightarrow Reduced MEBT length
 - Bunch current regulation with scraping still can be tested (for all bunches)
- Additional space for diagnostics (may be not required in Project X)
- Project X MEBT
 - 2 additional kickers
 - \Rightarrow 2 or 3 additional periods (2.3 3.45m)

Triplet focusing & 180° phase advance between kickers minimize kicker aperture

- Beam dump takes "entire period" (80 cm)
 - Prevents spattered material from reaching kicker and cavity
 - Differential pumping to get good vacuum in RF cavities
 - Three 162.5 MHz RF cavities
 - Voltages are up to ~100 kV (95, 10, 50)
 - 4σ beam envelopes are within ~ ± 70 deg
 - Distance to HW cavities should not be too large
 - presently, L = 2.2 m (center-to-center)
- Cavities introduce significant defocusing for transverse motion
 - \Rightarrow Small transverse beta-functions in the cavities
- It is desirable to reduce α -functions at RFQ end to $|\alpha_{x,y}| < 0.6$
 - Too large β_y at the line beginning

Thu Oct 20 23:37:55 2011 OptiM - MAIN: - C:\VAL\Optics\Project X\PXIE\PXIE_4.opt

Acceleration in PXIE

- SC cavities parameters
 - HW: 1.8 MV, ~60 mT, aperture 40 mm, 9 cavities
 - SSR1: 2 MV, ~60 mT, aperture 30 mm, 8 cavities
- That yields: MEBT 2.1 MeV, HW - 11 MeV,
- SSR1 27 MeV

- Accelerating gradients in SSR1 are ~35% higher than in the RDR
 - Experiment should point out which gradients have to be used for reliable operation
- HW (half-wave) cavities have twice higher energy gain per cavity than SSRO
 - Improved beam physics performance
 - Reduced beam defocusing due to lower frequency
 - Smaller length, price and number of cavities
 - Would not be possible without ANL help

Beam Envelopes in PXIE

Sat Oct 22 10:23:50 2011 OptiM - MAIN: - C:\VAL\Optics\Project X\PXIE\PXIE_4.opt

 1σ bunch length in deg. of nearby RF cavities (zero beam current)

Bunch end phases (relative to the on-crest acceleration) for 1σ and 4σ ($I_{beam} = 0$) Adjustment of cavity phases and amplitudes minimizes non-linear distortions of the longitudinal phase space

Longitudinal phase space for 1σ (blue) and 4σ (red, reduced in 4 times) ellipses: left - after MEBT, right - after SSR1 cryo-module.

Cavities introduce strong transverse defocusing

 Mitigation: first 4 cavities go as single cavities; then double cavities follow

Focusing depends on particle longitudinal position

Structure of Half-wave and SSR 1 cryo-modules

- X & Y & S BPM near each solenoid
- Each plane corrector is located in every second
- Solenoid polarity is changed in each next solenoid
- Each cryo-module starts and ends with cavity
 - HW:9 cavities, 6 solenoids (CSCSCSCSCSCSC)
 - SSR1: 8 cavities, 4 solenoids (CSCCSCCSC)
- HW-to-SSR1 interface
 - HW-to-SSR1 transition goes through room temp. vacuum chamber
 - Good from engendering and repair points of view
 - o complications of beam dynamics are manageable
 - Small space is left for instrumentation (~5 cm)
 Laser profile monitor

Functional requirements specifications are close to be completed

Simulation results with the space charge[†] (TracewWin)

3σ envelopes Energies: 2.1 MeV - 10.8 MeV - 24.4 MeV Rms norm. emittances: 0.25, 0.25, 0.25 mm*mrad 5 mA @162.5 MHz

† B. Stheynas

Synchronous Phase and Phase Advances

Beam Collimation in SC Cavities

Intrabeam stripping estimate for Project X

Particle loss due to IB stripping is expected to be less than 0.05W/m

- Angular divergence is determined by $\beta_{min} \sim 40$ cm
- Interception of 90% loss particles requires beam collimation with "two solenoids" period
- Taking into account overall small loss we can accept particle loss at 2 K

Beam Collimation in SC Cavities (continue)

- RFQ tails can present larger loss than the IB stripping at the acc. beginning
- Most losses happen in the second part of HW cryo-module
 - However energy lost in the SSR1 cryo-module is about the same
- Beam loss is happening so fast that a "reasonable" collimation cannot intercept its major part
- Looks like that instead of collimation in the SC cryomodules strict requirements to the RFQ tails look more practical
- Presently collimators are only anticipated in warm sections:
 - Before SC cryomodules & between SC cryomodules

Longitudinal phase space: left - initial with 20σ boundary, right - final. Red and green crosses present particles to be lost in the course of acceleration.

Sat Sep 17 12:23:05 2011 OptiM - MAIN: - C:\VAL\Optics\Project X\PXIE\PXIE3_shortMEBT.opt

Beam intensity reduction due to particle loss for beam consisting of tails only. Tails are presented by uniform distribution truncated at 20σ (top) and 5σ (middle); reference rms norm. long. emittance - 0.25 mm mrad. There is no particle loss if truncation is below 4.5 σ . Bottom plot presents 3σ transverse beam envelopes for nominal long. emittance.

Diagnostic Section and Beam Dump

- We did not discuss it yet
- Very preliminary thoughts and goals
 - RF separator
 - (81.25+325n) MHz, ~400 kV, warm, half-wave cavity, ~4 kW
 - Laser profile monitor to measure bunch distribution in all three planes
 - Spectrometer based on 30 deg. bend
 - Accurate measurements of longitudinal tails
 - 30 kW 30 MeV beam dump
 - Swiping-dipole to reduce power on the beam dump face

Sun Oct 23 20:26:08 2011 OptiM - MAIN: - C:\VAL\Optics\Project X\PXIE\PXIE_4.opt

Beam Extinction

- Serious discussion did not start yet
- PXIE official goal is ~10⁻⁴
- It is highly desirable to achieve 10⁻⁹ 10⁻¹²
 - Means of achievement
 - Scraping optimization
 - Wide band chopping (wider than it is presently considered, ~1 GHz)
 - RFQ tuning
 - Cavity phasing

• In particular, increased L phase advance between chopper kickers

Long. phase advance between 2 kickers ~90 deg allows scraping in both $\Delta p/p$ & s. It requires $V_{max} = 95 \rightarrow 130 \text{ keV}$

- ♦ Control
 - RF separation & Single particle detection

<u>Conclusions</u>

- Construction and successful commissioning of PXIE will eliminate major Project X vulnerabilities for 3 GeV operation
- It should deliver clear answer on the achievable extinction rate
- We are at the very beginning
 - We have good understanding of goals and means to achieve them
 - We are in the process of writing functional requirement documents for major systems
 - PXIE operation by the end of 2016 looks realistic
 - Support of the laboratory will be crucial to achieve this goal

Backup Slides

Energy 2.1 MeV - 10.8 MeV - 24.4 MeV; Emittances: 0.25, 0.25, 0.25 pi*mm*mrad

Surface magnetic field