

HWR for PXIE: Proposed fabrication technology

P.N. Ostroumov Physics Division

October 26, 2011

Project X Collaboration Meeting, October 25-27, 2011

Content

- Recent activities of our Group
- Fabrication steps
 - Purchase of Nb sheets and bar stock
 - Nb forming
 - Brazed SS-Nb transition
 - Nb machining, wire EDM
 - BCP
 - EBW

P.N. Ostroumov QWR&HWR

- SS vessel
- Alignment fiducials
- HWR for PXIE specs

Development and construction of a new 162.5 MHz HWR

- EM Design B. Mustapha
- Mechanical design and engineering analysis Z. Conway
- Fabrication steps
 - Nb forming
 - Brazed SS-Nb transition
 - Nb machining, wire EDM
 - EBW
 - Frequency tuning
 - SS vessel ASME pressure vessel code
- Cavity Sub-systems: RF coupler, slow and fast tuners M. Kelly, G. Zinkann
- RF surface processing M. Kelly
- Cryomodule: assembly, alignment Z. Conway and M. Kelly
- Operational experience with SC ion linac G. Zinkann

Recent Experience of ANL Linac Development Group

- In the past 26 months
 - Prototype 72.75 MHz QWR has been developed, built and tested
 - 6 production cavities have been built
 - Just finished construction of super-high gradient 72.75 MHz QW
 - Peak magnetic fields are expected to exceed 120 mT
 - New 322 MHz, β =0.285 HWR for the MSU/FRIB has been developed
 - Complete engineering and mechanical design
 - New super-high gradient 325 MHz HWR resonator has been developed
 - Being constructed, die forming of Nb parts is in progress
 - Will be completed in the summer of 2012
 - Optimized EM design of SC cavities for several other applications
 - 162.5 MHz HWR for FNAL
 - Low- β (0.085) and high- β (0.15) 176 MHz HWRs for SARAF
 - Low- β (0.085) and high- β (0.15) 109 MHz QWRs for SARAF

Overall design philosophy of SC cavities

- Incorporate into the cavity design the following features and sub-systems
 - RF coupler
 - Slow tuner
 - Fast tuner
 - RF surface processing
 - Facilitate integration into the cryomodule
 - Cavity alignment
- Fabrication is being done under close supervision of ANL experts
 - EBW by an ANL engineer
 - Wire EDM set up by an ANL engineer
 - Helium vessel work under ANL engineer guidance
- RF surface processing, assembly, testing
 - ANL experts

P.N. Ostroumov QWR&HWR

Example: 72.75 MHz QWR

Exploded view of Nb and SS parts

C

- Nb purchase: 1/8" sheets and bar stocks
- SS helium vessel
- Nb-SS brazed joints ^{co}

HWR: exploded view (preliminary)

Fabrication Steps: QWR Nb parts

Niobium parts for production cavities, formed from flat sheets and machined from bar stocks

Central conductor halves

Cylinder housing

Toroids with gussets and extension tubes

Brazed Nb-SS transitions (coupling ports, beam ports)

Bottom domes

Tapered sections

Pop (

Cavity Fabrication by Wire EDM

Essentially no possibility for inclusions

Workshop, September 23-24, 2011

P.N. Ostroumov QWR&HWR

Sinker EDM of the Toroid center conductor mating surface

Wire EDM

- Recast layer only 5 microns thick
 - Oxide of brass and niobium
 - Completely removed with a 5 minute BCP; not removed easily by EP

BCP etch after Machining, EDM, 24 hours prior EBW

Electron Beam Welding

AFTER THE PARTS WELD SEAMS ARE EDMed OR MACHINED TO SIZE THEY RECEIVE A 5 MICRON BCP ETCH AND WITHIN 24 HOURS OF ETCH ARE WELDED.

Central Conductors

Cylindrical Housing

Electron Beam Welding of multiple parts

Tapered sections

Welding of each part requires well-designed support fixturing

Electron Beam Welding

P.N. Ostroumov QWR&HWR

IMP Workshop, September 23-24, 2011

Niobium welds completed

Stainless steel jacket is assembled to complete cavity fabrication

Stainless Steel LHe Vessel, TIG welding

Final Step: connect beam ports to the SS helium vessel using Electron Beam Welding

P.N. Ostroumov QWR&HWR

Workshop, September 23-24, 2011

21

Fiducials for the cavity alignment

Current status of the 162.5 MHz, β =0.11 HWR

- EM design is nearly complete
- Detailed procedures for the mechanical design and engineering analysis have been developed
 - is being started as I speak
- Detailed fabrication procedure exists
- Beam aperture 33 mm
- RF coupler will be capable either to transmit 10 kW RF power to the beam or withstand full reflection
- Will be built in compliance with the ASME pressure vessel code

First "Cold Test" of the new ATLAS Superconducting Quarter Wave Resonator, December 14, 2010

