EM Design Optimization Of The 162.5 MHz - β ~ 0.11 - HWR

Brahim Mustapha
Physics Division, Argonne National Laboratory

2011 Fall Project X Collaboration Meeting
Fermilab, October 25-27, 2011

Content

- EM Design Goal: 1.8 MV at $40 \mathrm{MV} / \mathrm{m}$ and 70 mT
- Choice/Optimization of the cavity β
- EM Design Optimization Procedure
- Fully parameterized cavity geometry
- RF parameters to optimize for
- Geometry parameters to optimize/choose/fix first
- Improved procedure: semi-automatic, higher mesh, finer parameter steps, ...
- Optimization of the $162.5 \mathrm{MHz}-\beta$ ~ 0.11 - HWR
- Larger aperture effect on the RF Parameters
- Re-optimized design for 40 mm aperture instead of 30 mm
- Summary

EM Design Goal

1.8 MV at $40 \mathrm{MV} / \mathrm{m}$ and 70 mT

Choice / Optimization of the cavity β

- β optimization is based on the beta range, design voltage, other cavities ...
- The energy range is $2.1 \mathrm{MeV} / \mathrm{u}$ to $10 \mathrm{MeV} / \mathrm{u} \rightarrow \beta$: from 0.067 to 0.145
- Using the design voltage of 1.8 MV , we found β _opt ~ 0.11.

- At this voltage, 5 cavities should be enough to cover the energy range, BUT ...

EM Design Optimization: Fully Parameterized Geometry

\times 	Name	Value	Description
	CVAPR	1.5	Cavity Aperture Radius
	CVFL	2.0	Cavity Flat Length
	$\mathrm{CV} / \mathrm{MH}$	7.0	Cavity Middle Height
	CVMR	12.0	Cavity Middle Radius
	CVTBR	[CVTR-ICTR]/2.0	Cavity Top Blending Radius
	CVTH	50.46	Cavity Top Height
	CVTR	17.0	Cavity Top Radius
	DTEBR	1.5	Drift Tube Edge Blending Radius
	DTIBR	0.5	Drift Tube Inner Blending Radius
	DTIR	5.0	Drift Tube Inner Radius
	DTOBR	3.6	Drift Tube Blending Radius
	DTOR	5.0	Drift Tube Outer Radius
	DTPN	CVMR-(MGD+Gap	Drift Tube Penetration
	Gapw	4.8	Gap Width
	ICFL	2.0	Inner Conductor Flat Length
	ICRTX	3.8	Inner Conductor Rice Track Depth (X)
	ICRTY	2.0	Inner Conductor Race Track Height (Y)
	ICRTZ	(MGD-GapW)/2.	Inner Conductor Race Track Width (Z)
	ICTH	CVTH	Inner Conductor Top height
	ICTR	7.0	Inner Conductor Top Radius
	MGD	8.4	Mid-Gap Distance
	Global		

- The table shows the list of geometry parameters as seen in MW-Studio
- The geometry parameters are NOT independent

RF Parameters to Optimize for

- E-peak: Minimize peak surface electric field to limit field emission
- B-peak: Minimize peak magnetic field to maintain superconductivity
- $\mathrm{R} / \mathrm{Q}=\mathrm{V} 2 / \omega \mathrm{U}$: Maximize R / Q to produce more accelerating voltage (V) with less stored energy in the cavity (U)
- G = Rs*Q: Maximize the geometry factor to increase the cavity effectiveness of providing accelerating voltage due to its shape alone

Geometry Parameters to Choose/Optimize/Fix First

- Choice of Cavity Shape: Cylindrical or Conical based on overall dimensions and RF parameters
- Cavity Outer Dimensions: How big could it be ? Considering
- Overall cavity and cryomodule dimensions
- Mechanical and manufacturing limitations
- Processing and handling limitations
- RF parameters: Bigger is usually better
- ...
- Mid-Gap Distance: Adjusted to get β _opt = β _design
- β _opt may drift during the rest of the optimization but could be adjusted

EM Design Optimization: Improved Procedure

- The original procedure was manual with ~ 200 k hexagonal meshcells for fast turn-around.
- The new one is semi-automatic where MWS does most of the work: MWS parameter sweeps are used instead of the manual sweeps.
- Smaller geometry parameter variation steps: 1-2 mm instead of 0.5-1 cm
- Higher mesh is used for better accuracy: 1M instead of 200k
- The order of parameter sweeps is important: MGD \rightarrow GapW \rightarrow...
- If there are several potential optimum branches, they will be investigated

200k versus 1M Results (GapW: Gap Width)

200 k Sweep
1 M Sweep

Mesh Cells	Freq MHz	$\beta_{\text {_opt }}$	Leff (cm)	Ep/Ea -	Bp/Ea $\mathrm{Gs} /$.	R / Q Ω	G Ω
233 k	162.49	0.111	20.3	4.474	64.399	224.66	46.78
1.04 M	162.49	0.110	20.3	4.643	63.760	225.14	47.17

$\rightarrow 200 \mathrm{k}$ sweeps show similar parameter dependence as the 1M sweeps BUT have more fluctuations and different absolute values for RF parameters especially E-peak.

Starting Geometry: Scaled from an optimized design

Sweep GapW (Gap Width)

E-peak U, B-peak $\uparrow, R / Q \downarrow$ and $G \uparrow \rightarrow$ GapW $=5.2 \mathrm{~cm}$ E-peak minimum is around 5.2 cm , but B-peak is minimum around 4 cm

Sweep ICRTX (Inner Conductor Race Track Width)

E-peak $\uparrow, B-$ peak $\uparrow, R / Q \downarrow$ and $G \downarrow \rightarrow$ ICRTX $=3.6 \mathrm{~cm}$

Sweep ICRTY (Inner Conductor Race Track Height)

E-peak \rightarrow, B-peak ~, R/Q and G $\uparrow \rightarrow$ ICRTY $=5.0 \mathrm{~cm}$

Sweep DTOR (Drift Tube Outer Radius)

E-peak U, B-peak $\uparrow, R / Q \cap$ and $G \downarrow \rightarrow$ DTOR $=5.0 \mathrm{~cm}$

Sweep DTOBR (Drift Tube Outer Blending Radius)

$$
\text { E-peak U, B-peak } \rightarrow, \text { R/Q and } G \rightarrow \rightarrow \text { DTOBR }=4.0 \mathrm{~cm}
$$

Sweep DTIBR (Drift Tube Inner Blending Radius)

Optimum Geometry

Optimization Results

Geometry	Mesh Cells	Freq MHz	β _opt	Leff (cm)	Ep/Ea -	$\mathrm{Bp} / \mathrm{Ea}$ $\mathrm{Gs} /$.	R / Q Ω	G Ω
Start	1.04 M	162.50	0.110	20.3	4.642	63.76	225.14	47.17
End	1.04 M	162.50	0.113	20.85	4.351	67.69	228.75	47.69

- The end cavity has better E-peak and R/Q but worse B-peak
- The start cavity is capable of delivering 1.75 MV at $40.0 \mathrm{MV} / \mathrm{m}$ and 54.9 mT and 2.23 MV at 51.0 MV/m and 70.0 mT
- The end cavity is capable of delivering 1.92 MV at $40.0 \mathrm{MV} / \mathrm{m}$ and 62.2 mT and 2.16 MV at $45.0 \mathrm{MV} / \mathrm{m}$ and 70.0 mT
- The end cavity meets the 1.8 MV design goal at $40 \mathrm{MV} / \mathrm{m}$ and 70 mT

162.5 MHz - β ~ 0.11 - HWR: Field Distributions (X cut)

Type
Monitor
Component
Maximum-3D
Frequency
Phase

Type
Monitor
Component
Maximum-3D
Frequency
Phase

H-Field (peak)

Mode 1
Abs
$12483.4 \mathrm{~A} / \mathrm{m}$ at $5.34202 / 27.7441 /-2.6819 \mathrm{e}-815$
162.502

95 degrees
B. Mustapha

162.5 MHz - β ~ 0.11 - HWR: Field Distributions (Z cut)

Larger Aperture Effect on the RF Parameters

Aperture	Mesh Cells	Freq MHz	$\beta_{\text {_opt }}$	Leff (cm)	Ep/Ea -	Bp/Ea $\mathrm{Gs} /$.	R/Q Ω	G Ω
30 mm	1.04 M	162.50	0.113	20.85	4.351	67.69	228.75	47.69
40 mm	1.07 M	162.51	0.108	19.93	5.110	76.17	200.24	47.36

- The cavity was re-optimized with a 40 mm aperture instead of 30 mm .
- The outer cavity dimensions are kept unchanged \rightarrow same G factor.
- We notice a significant effect on E-peak, B-peak and R/Q but it should be less significant for the final aperture choice of 33 mm .
- The 40 mm cavity is capable of delivering 1.56 MV at $40.0 \mathrm{MV} / \mathrm{m}$ and 59.6 mT and 1.83 MV at 47.0 MV/m and 70.0 mT
- The 40 mm cavity meets the 1.8 MV design goal at $47 \mathrm{MV} / \mathrm{m}$ and 70 mT

Summary

- We have established a finer EM design optimization procedure.
- We have developed an optimized EM design for the 162.5 MHz $-\beta \sim 0.11$ - HWR exceeding the design goal of 1.8 MV with a 30 mm aperture.
- The design was re-optimized with a 40 mm aperture where significant effect on the RF parameters was observed.
- The aperture effect should be less important for the final aperture choice of 33 mm

