

EM Design Optimization Of The 162.5 MHz - $\beta \sim 0.11$ - HWR

Brahim Mustapha Physics Division, Argonne National Laboratory

2011 Fall Project X Collaboration Meeting Fermilab, October 25-27, 2011

Content

- EM Design Goal: 1.8 MV at 40 MV/m and 70 mT
- Choice/Optimization of the cavity β
- EM Design Optimization Procedure
 - Fully parameterized cavity geometry
 - RF parameters to optimize for
 - Geometry parameters to optimize/choose/fix first
 - Improved procedure: semi-automatic, higher mesh, finer parameter steps, ...
- Optimization of the 162.5 MHz β ~ 0.11 HWR
- Larger aperture effect on the RF Parameters
 - Re-optimized design for 40 mm aperture instead of 30 mm
- Summary

B. Mustapha

2

EM Design Goal

1.8 MV at 40 MV/m and 70 mT

EM Design Optimization Of The 162.5 MHz - β ~ 0.11 - HWR

Project X Fall Meeting, October 25-27, 2011

3

Choice / Optimization of the cavity $\boldsymbol{\beta}$

- β optimization is based on the beta range, design voltage, other cavities ...
- The energy range is 2.1 MeV/u to 10 MeV/u $\rightarrow \beta$: from 0.067 to 0.145
- Using the design voltage of 1.8 MV, we found $\beta_{opt} \sim 0.11$.

• At this voltage, 5 cavities should be enough to cover the energy range, BUT ...

EM Design Optimization Of The 162.5 MHz - β ~ 0.11 - HWR

Project X Fall Meeting , October 25-27, 2011

EM Design Optimization: Fully Parameterized Geometry

×	Name	Value	Description						
	CVAPR	1.5	Cavity Aperture Radius						
	CVFL	2.0	Cavity Flat Length						
	CVMH	7.0	Cavity Middle Height						
	CVMR	12.0	Cavity Middle Radius						
	CVTBR	(CVTR-ICTR)/2.0	Cavity Top Blending Radius						
	CVTH	50.46	Cavity Top Height						
	CVTR	17.0	Cavity Top Radius						
	DTEBR	1.5	Drift Tube Edge Blending Radius						
	DTIBR	0.5	Drift Tube Inner Blending Radius						
	DTIR	5.0	Drift Tube Inner Radius						
	DTOBR	3.6	Drift Tube Blending Radius						
	DTOR	5.0	Drift Tube Outer Radius						
	DTPN	CVMR-(MGD+GapW)/2	Drift Tube Penetration						
	GapW	4.8	Gap Width						
	ICFL	2.0	Inner Conductor Flat Length						
	ICRTX	3.8	Inner Conductor Race Track Depth (X)						
	ICRTY	2.0	Inner Conductor Race Track Height (Y)						
	ICRTZ	(MGD-GapW)/2.	Inner Conductor Race Track Width (Z)						
ter List	ICTH	CVTH	Inner Conductor Top height						
	ICTR	7.0	Inner Conductor Top Radius						
ame	MGD	8.4	Mid-Gap Distance						
Par	Global /								

- The table shows the list of geometry parameters as seen in MW-Studio
- The geometry parameters are NOT independent

B. Mustapha

EM Design Optimization Of The 162.5 MHz - β ~ 0.11 - HWR

RF Parameters to Optimize for

- E-peak: Minimize peak surface electric field to limit field emission
- B-peak: Minimize peak magnetic field to maintain superconductivity
- R/Q = V2/ωU: Maximize R/Q to produce more accelerating voltage (V) with less stored energy in the cavity (U)
- G = Rs*Q: Maximize the geometry factor to increase the cavity effectiveness of providing accelerating voltage due to its shape alone

6

Geometry Parameters to Choose/Optimize/Fix First

- Choice of Cavity Shape: Cylindrical or Conical based on overall dimensions and RF parameters
- Cavity Outer Dimensions: How big could it be ? Considering
 - Overall cavity and cryomodule dimensions
 - Mechanical and manufacturing limitations
 - Processing and handling limitations
 - RF parameters: Bigger is usually better
 - ...
- Mid-Gap Distance: Adjusted to get $\beta_{opt} = \beta_{design}$
 - $-\beta_{opt}$ may drift during the rest of the optimization but could be adjusted

EM Design Optimization: Improved Procedure

- The original procedure was manual with ~ 200 k hexagonal meshcells for fast turn-around.
- The new one is semi-automatic where MWS does most of the work: MWS parameter sweeps are used instead of the manual sweeps.
- Smaller geometry parameter variation steps: 1-2 mm instead of 0.5-1 cm
- Higher mesh is used for better accuracy: 1M instead of 200k
- The order of parameter sweeps is important: MGD \rightarrow GapW \rightarrow ...
- If there are several potential optimum branches, they will be investigated

200k versus 1M Results (GapW: Gap Width)

 \rightarrow 200 k sweeps show similar parameter dependence as the 1M sweeps BUT have more fluctuations and different absolute values for RF parameters especially E-peak.

Starting Geometry: Scaled from an optimized design

	····						
×	Name	Value	Description				
	CVAPR	1.5	Cavity Aperture Radius				
	CVFL	2.0	Cavity Flat Length				
	CVMH	7.0	Cavity Middle Height				
	CVMR	12.0	Cavity Middle Radius				
	CVTBR	(CVTR-ICTR)/2.0	Cavity Top Blending Radius				
	CVTH	50.46	Cavity Top Height				
	CVTR	17.0	Cavity Top Radius				
	DTEBR	1.5	Drift Tube Edge Blending Radius				
	DTIBR	0.5	Drift Tube Inner Blending Radius				
	DTIR	5.0	Drift Tube Inner Radius				
	DTOBR	3.6	Drift Tube Blending Radius				
	DTOR	5.0	Drift Tube Outer Radius				
	DTPN	CVMR-(MGD+GapW)/2	Drift Tube Penetration				
	GapW	4.8	Gap Width				
	ICFL	2.0	Inner Conductor Flat Length				
	ICRTX	3.8	Inner Conductor Race Track Depth (X)				
	ICRTY	2.0	Inner Conductor Race Track Height (Y)				
	ICRTZ	(MGD-GapW)/2.	Inner Conductor Race Track Width (Z)				
List	ICTH	CVTH	Inner Conductor Top height				
ameter L	ICTR	7.0	Inner Conductor Top Radius				
	MGD	8.4	Mid-Gap Distance				
Par	\Global /						

Sweep GapW (Gap Width)

E-peak U, B-peak \uparrow , R/Q \downarrow and G $\uparrow \rightarrow$ GapW = 5.2 cm E-peak minimum is around 5.2 cm, but B-peak is minimum around 4 cm

EM Design Optimization Of The 162.5 MHz - β ~ 0.11 - HWR

Project X Fall Meeting , October 25-27, 2011

Sweep ICRTX (Inner Conductor Race Track Width)

E-peak \uparrow , B-peak \uparrow , R/Q \downarrow and G $\downarrow \rightarrow$ ICRTX = 3.6 cm

Sweep ICRTY (Inner Conductor Race Track Height)

E-peak \rightarrow , B-peak \sim , R/Q and G $\uparrow \rightarrow$ ICRTY = 5.0 cm

EM Design Optimization Of The 162.5 MHz - β ~ 0.11 - HWR

Project X Fall Meeting , October 25-27, 2011

Sweep DTOR (Drift Tube Outer Radius)

E-peak U, B-peak \uparrow , R/Q \cap and G $\downarrow \rightarrow$ DTOR = 5.0 cm

EM Design Optimization Of The 162.5 MHz - β ~ 0.11 - HWR

Project X Fall Meeting , October 25-27, 2011

an meeting, October 25

Sweep DTOBR (Drift Tube Outer Blending Radius)

E-peak U, B-peak \rightarrow , R/Q and G $\rightarrow \rightarrow$ DTOBR = 4.0 cm

EM Design Optimization Of The 162.5 MHz - β ~ 0.11 - HWR

Project X Fall Meeting , October 25-27, 2011

15

Sweep DTIBR (Drift Tube Inner Blending Radius)

EM Design Optimization Of The 162.5 MHz - β ~ 0.11 - HWR

Project X Fall Meeting , October 25-27, 2011

Optimum Geometry

×	Name	Value	Description			
	CVAPR	1.5	Cavity Aperture Radius			
	CVFL	2.0	Cavity Flat Length			
	CVMH	7.0	Cavity Middle Height			
	CVMR	12.0	Cavity Middle Radius			
	CVTBR	(CVTR-ICTR)/2.0	Cavity Top Blending Radius			
	CVTH	51.78	Cavity Top Height			
	CVTR	17.0	Cavity Top Radius			
	DTEBR	1.5	Drift Tube Edge Blending Radius			
	DTIBR	0.5	Drift Tube Inner Blending Radius			
	DTIR	5.0	Drift Tube Inner Radius			
	DTOBR	4.0	Drift Tube Blending Radius			
	DTOR	5.0	Drift Tube Outer Radius			
	DTPN	CVMR-(MGD+GapW)/2	Drift Tube Penetration			
	GapW	5.2	Gap Width			
	ICFL	2.0	Inner Conductor Flat Length			
	ICRTX	3.6	Inner Conductor Race Track Depth (X)			
	ICRTY	5.0	Inner Conductor Race Track Height (Y)			
ameter List	ICRTZ	(MGD-GapW)/2.	Inner Conductor Race Track Width (Z)			
	ICTH	CVTH	Inner Conductor Top height			
	ICTR	7.0	Inner Conductor Top Radius			
	MGD	8.4	Mid-Gap Distance			
ĵ	Global					

Optimization Results

Geometry	Mesh	Freq	β_opt	Leff	Ep/Ea	Bp/Ea	R/Q	G
	Cells	MHz		(cm)	-	Gs/.	Ω	Ω
Start	1.04M	162.50	0.110	20.3	4.642	63.76	225.14	47.17
End	1.04M	162.50	0.113	20.85	4.351	67.69	228.75	47.69

The end cavity has better E-peak and R/Q but worse B-peak

- The start cavity is capable of delivering 1.75 MV at 40.0 MV/m and 54.9 mT and 2.23 MV at 51.0 MV/m and 70.0 mT
- The end cavity is capable of delivering 1.92 MV at 40.0 MV/m and 62.2 mT and 2.16 MV at 45.0 MV/m and 70.0 mT
- The end cavity meets the 1.8 MV design goal at 40 MV/m and 70 mT

EM Design Optimization Of The 162.5 MHz - β ~ 0.11 - HWR

Project X Fall Meeting , October 25-27, 2011

B. Mustapha

18

162.5 MHz - β ~ **0.11 – HWR:** Field Distributions (X cut)

162.5 MHz - \beta \sim 0.11 - HWR: Field Distributions (Z cut)

Larger Aperture Effect on the RF Parameters

Aperture	Mesh	Freq	β_opt	Leff	Ep/Ea	Bp/Ea	R/Q	G
	Cells	MHz		(cm)	-	Gs/.	Ω	Ω
30 mm	1.04M	162.50	0.113	20.85	4.351	67.69	228.75	47.69
40 mm	1.07M	162.51	0.108	19.93	5.110	76.17	200.24	47.36

- The cavity was re-optimized with a 40 mm aperture instead of 30 mm.
- The outer cavity dimensions are kept unchanged \rightarrow same G factor.
- We notice a significant effect on E-peak, B-peak and R/Q but it should be less significant for the final aperture choice of 33 mm.
- The 40 mm cavity is capable of delivering 1.56 MV at 40.0 MV/m and 59.6 mT and 1.83 MV at 47.0 MV/m and 70.0 mT
- The 40 mm cavity meets the 1.8 MV design goal at 47 MV/m and 70 mT

B. Mustapha

EM Design Optimization Of The 162.5 MHz - β ~ 0.11 - HWR

Project X Fall Meeting , October 25-27, 2011

Summary

- We have established a finer EM design optimization procedure.
- We have developed an optimized EM design for the 162.5 MHz $-\beta \sim 0.11$ HWR exceeding the design goal of 1.8 MV with a 30 mm aperture.
- The design was re-optimized with a 40 mm aperture where significant effect on the RF parameters was observed.
- The aperture effect should be less important for the final aperture choice of 33 mm

B. Mustapha

EM Design Optimization Of The 162.5 MHz - β ~ 0.11 - HWR