MI-RF Status and Plans

Joseph E. Dey – Fermilab Liling Xiao – SLAC National Accelerator Laboratory

> 2011 Project X Collaboration Meeting October 26, 2011

MI RF System Specifications

Parameter	Value	Units
Frequency	52.811-53.104	MHz
Max. Acceleration Rate	240	GeV/sec
Frequency slew rate	1.6	MHz/sec
Acceleration Voltage	2.7	MV
Beam Power	6.2	MW
Average Beam Power	3.0	MW
Peak Voltage	4.7	MV
Average Beam Current	2.3	Α
Fundamental rf Current	3.7-4.1	Α

Project X

Cavity Parameters

Joe Dey 8/31/10

	Project X New Cavity Design
Harmonic Number	588
Frequency	52.617-53.104 MHz
Acceleration Ramp Slope	240 GeV/s
Peak Beam Current	4.51 A
Total Beam Accelerating Power	6.144 MW
Number of Accelerating Cavities	20
Cavity R/Q	50
Q	10000
Maximum Cavity Accelerating Voltage	240 kV/Cavity
Accelerating Voltage Required: Vsin ϕ_s	2.66 MV
Total Accelerating Voltage Available	4.80 MV

Robinson Stability at 30 GeV

 ϕ s = 33.6327 deg Cavity Power Loss per Cavity = 57.6 kW Total Apparent Power = 558.417 × 10³ VA \perp 50.209 degrees Total Current = 4.65347 A \perp 50.209 degrees Percent of Induced Mode Compensated = 26.4 dB = 95.2137 % Robinson Stable Limit = 4.01439

Project X MI Cavity I

Project X Main Injector 53 MHz Cavity I Cavity Material: Copper Ferrite Material: TCI Ceramics AL-0400 Quantity 30 32 cm OD x 12 cm ID x 1 cm thickness 0.5 cm garnet separation 300 gauss to 2250 gauss to change μ r from 2.5 to 1.2 48.882 55 53.882 50 Permittivity (Er) of 13.5 R 30.5 R 21 12 Beam R 7.62 R 2 137 Units: cm

Project X Collaboration Meeting September 8, 2010 Joseph E. Dey

Project X MI Cavity II

Project X Main Injector 53 MHz Cavity II

Units: cm

Project X Collaboration Meeting September 8, 2010 Joseph E. Dey

MI Cavity I and II for Project X

Simulated and optimized by SLAC

MI Cavity I & II Simulation Results

@μr=2.5, Vgap=240kV, tuner intrusion=55mm		MI-Cavity-I	MI-Cavity-II
	R/Q (Ω)	51.23	56.95
	F (MHz)	52.812	53.557
Operating Mode	Tuning range ∆f (KHz)	584	539
	Max. Es (mV/m)	7.4	12.2
	Max. Bs (T)	39	32
Power Distributions	P(kW) (wall/ferrite/ceramic)	117/39/0.7	104/28/7
Monopole HOMs	Max. R/Q (Ω)	22	19
Horizontal Dipole HOMs	Max. R/Q_T (Ω)	17	1.5
Vertical Dipole HOMs	Max. R/Q_T (Ω)	17	1.6
	Max. center shift (mm)	43	29

Cavity II has better RF performance than cavity I in terms of HOM effects to the beam.

- *However, the stronger max. E-field in the ceramic limits its use for Project-X.*
- > Therefore, cavity I is optimized for the MI cavity for Project-X.

MI Cavity I Tuning Range

- *The tuning range of 487kHz is required for 6GeV to 120GeV operation.*
- Optimal tuning range would be 1MHz to cover cavity imperfection, temperature variations etc.
- Using a narrow tuner loop, 1MHz tuning range can be obtained with a certain spacing between the tuner and the cavity inner conductors.

Loop width=60mm, dF=1MHz @ d=75mm

MI Cavity I Dangerous HOM Modes

Monopole Modes

Cavity Type	Ferrite ur	F (MHz)	R/Q (Ω /cavity)	Q0	Rs ($k\Omega$ /cavity)
	2.5	161.83	22.06	16580	366
I		269.72	15.45	19973	309
	1.2	164.42	15.44	15310	236
		269.17	17.75	20026	355

Dipole Modes

Cavity-I (-	<300 MHz)	F (MHz)	R/Q_t (Ω/	Q0	Rsh_t (kΩ/mm/
			cavity)		cavity)
	H-dipole	205.39	16.79	20210	1.46
		261.08	15.60	23769	2.03
Ur=2.5		261.63	4.03	29714	0.66
	V-dipole	206.39	17.05	20005	1.47
		264.20	11.55	22483	1.44
Ur=1.2	H-dipole	205.31	16.65	20161	1.44
		261.09	19.75	22103	2.39
	V-dipole	206.04	17.13	20000	1.48
		263.50	17.61	21500	2.09

> Due to the ferrite vessel, the vertical dipole modes are all off-center from the ferrite vessel.

HOM Damper w/o Filter

- There are two dangerous monopole HOMs to be damped by HOM dampers.
- HOM dampers should be equipped with a fundamental mode rejection filter.
- *HOM dampers can handle a certain amount of power.*

Cavity I with two mirrored HOM dampers w/o filter

 HOM damper using a coaxial line has a larger power capacity. (D57.5mm/25mm)

- HOM coaxial damper with a large loop located at the rear end of the cavity can damp many HOMs.
- HOM damper with 45 degree orientation can damp both monopole and dipole modes.
- Rounded loop design can suppress multipacting activities at HOM damper.
- Bended HOM coaxial damper can take less space for installing two more RF cavities (18->20).

HOM Mode Damping w/o Filter

The dangerous monopole and dipole modes can be heavily damped with the two mirrored HOM dampers.

Power Input Coupler

- *Eimac* 8973 power tetrode is chosen as the power source for the new MI cavity.
- It can operate at both 53MHz and 106 MHz with more than 1MW output power.
- *E-probe coupling is adopted in MI cavity power input coupler design.*
- The input coupling should be matched when the maximum beam current is accelerated.

Project-X Collaboration Meeting, Oct. 26,

MI Cavity Simulation Plan

SLAC will continue to collaborate with FNAL

- Finalize the cavity I design to meet Project-X requirements.
- Simulate the cavity I temperature map that can be used for its cooling system design.
- Scale down the current cavity I as the baseline design of a second-harmonic cavity.
- Simulate the second harmonic cavity RF parameters.
- If needed, will realize a HOM damper design for the second-harmonic cavity.

CST Microwave Studio Simulations

Project X Collaboration Meeting September 8, 2010 Joseph E. Dey

Project X

Page 16

HOM Damper Design

Project X Collaboration Meeting September 8, 2010 Joseph E. Dey

HOM Damper Response

- Cavity
 - Build Copper Mockup of 53 MHz cavity
 - > Look at Higher Order Modes, R/Q, and Coupling Issues
- Higher Order Mode Damper
 - Build Copper Mockup of 53 MHz cavity
 - > Look at Cavity Mode Response with Dampers
- Second Harmonic Cavity, 106 MHz
 - Start Initial Paper Design
 - Cavity Simulations
 - Review Design