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Graph neural networks

@ cINCINNAT

Describe information structure as a graph represented by and edges.

\

i

are generalised as
guantised objects with some
arbitrary set of features.

- Edges describe the

relationships between nodes.

- Perform convolutions on nodes

and edges to learn relationships
within the graph.

- Qutput is user-defined:

- Classify nodes or edges.
- Classify full graph.

- Regression outputs.
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Graph networks in H

- Investigating the use of Graph Neural Networks (GNNs) as an alternative to
Convolutional Neural Networks (CNNSs).

- Building on promising results from the HEP.TrkX collaboration using such methods for
track reconstruction in the LHC world.

- Exa.TrkX project building on these results to further develop techniques in HL-LHC, and
branch out to explore other detector technologies like LArTPCs.
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Minimal sim/reco chain:
- GENIE/Geant4 simulation.

@ cINCINNAT

Simulation
- CCQE beam neutrino interactions .
Few-GeV energy. &,
\"9
Neutrinos travel along beam direction. ‘f”‘%
- Typically “clean” interactions — primary o
. : Nucleus
lepton (e,u) and minimal hadronic
activity.

Detector simulation.

-+ Wire deconvolution & hit finding.
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@ CINCINNAT
Message-passing networks
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arxiv:1810.06111

- Message-passing network aggregates information from neighlbbouring nodes across edges to form new
features on each node, utilising an attention mechanism to weight up useful edges.

- Repeat the same network multiple times in order for information to travel further across the graph over multiple
iterations (the “message passing”).

- Edge classifier:
- Input for each node is the features of incoming and outgoing nodes.
- Two multi-layer perceptrons, using Tanh and sigmoid activations.
- Qutputs sigmoid score on each edge.
- Node classifier:
- Uses edge score to aggregate each node’s features with incoming & outgoing edges as input.
- Two multi-layer perceptrons with Tanh activation.

- Produces new features for each node.
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Message-passing network

Start with graph node features
‘ (hit position, amplitude, RMS, etc)
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@ CINCINNAT
Message-passing network

\_/ Form edge features by
L\ pulllng in features from incoming

and outgoing node
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Message-passing network

Perform convolutions on
edge scores to form a set
of class-wise probabilities
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Message-passing network

\v\\> V7
— /Propagate features from each
\ node to adjacent nodes,

weighted by edge score
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Message-passing network

Perform convolutions
‘ to form new node features
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Message-passing network

Repeating this process causes
iInformation to spread across
the graph

lteration O
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Message-passing network

Repeating this process causes
iInformation to spread across
the graph

lteration 1
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Message-passing network

Repeating this process causes
iInformation to spread across
the graph

lteration 2
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D reconstruction

“! Induction 1

Start with 2D representation and build up
using graph network.

Colour coded according to true
simulated particle.

Three 2D representations of the same 3D
Interaction.

“! Induction 2 “ Collection
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Vy graph construction

- Connect hits that are adjacent in wire and time with potential edges.

- Potential edges drawn in grey between nodes.
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Vy graph construction

@ cINCINNAT

Potential graph edges formed for hits in close proximity (5 wires & 50 time

ticks).

Potential edges then classified as hadronic, muon, shower or as an

objective for learning.
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- Edges are classified as

if the two hits were
not produced by the
same particle in the
underlying simulation.

- Muon edges are hits

produced by the primary
muon, shower edges by
the primary electron, and
hadronic edges are the

remainder.
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Ve graph construction

@ cINCINNAT

Potential graph edges formed for hits in close proximity (5 wires & 50 time

ticks).

Potential edges then classified as hadronic, muon, shower or as an

objective for learning.
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- Edges are classified as

if the two hits were
not produced by the
same particle in the
underlying simulation.

- Muon edges are hits

produced by the primary
muon, shower edges by
the primary electron, and
hadronic edges are the

remainder.
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Multihead attention message-passing network

- Build on Exa. TrkX binary edge classifier.

Produce 4 edge attention scores on each edge.

- Take the softmax of those edges with each iteration.

Pass messages + form node features independently for each class.

If an edge is strongly shower-like, the track-like classes will be weighted down
accordingly.

Input
graph

Input
network

Edge
network

(4 edge
scores)

Softmax + activation

Node
network

(scatter
add node
features
for each
class)

Edge
network

(4 edge
scores)

—>
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Node
network
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add node
features
for each
class)

Edge
network

(4 edge
scores)

=

Softmax

Class scores
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True label

@ cINCINNAT

2D edge classification network

- Current iteration achieves 84% accuracy in classifying graph edges.

- Performs well on showers, but still room for improvement in tracks.
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label

True

shower muon hadronic

false

@ cINCINNAT

D edge classification network

Current iteration achieves 84% accuracy in classifying graph edges.

Performs well on showers, but still room for improvement in tracks.

0 Ground truth

- 0.7

Model output

hadronic, muon, shower,

false shower muon hadronic
Assigned label
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Next steps

@ cINCINNAT

In current setup, the three views are categorised independently.

- Match hits produced concurrently in time to allow information flow between views.

Message-passing between planes may aid with clustering within each plane.

- Long-term goal: combine with heterogeneous graph nodes such as LArTPC optical

detector system for time matching.
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@ CINCINNAT
Next steps

- Edge classification was a natural fit for track-forming in HL-LHC.

- Clearly shows promise in neutrino physics too, but less well-suited to the problem
of clustering hits into dense objects.

- Need a scheme to collapse disparate classified edges into objects.

- Objective function scores each edge independently, and doesn’t have any
wider context.

- Considering newer techniques such as graph pooling and instance segmentation.

- Move beyond simple CCQE interactions to more complex event topologies
- Build more sophisticated definitions of the ground truth.

-+ Scale up from 2D representations to 3D.
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