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Graph neural networks
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• Describe information structure as a graph represented by nodes and edges.

• Nodes are generalised as 
quantised objects with some 
arbitrary set of features. 

• Edges describe the 
relationships between nodes. 

• Perform convolutions on nodes 
and edges to learn relationships 
within the graph. 

• Output is user-defined: 
• Classify nodes or edges. 
• Classify full graph. 
• Regression outputs.
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Graph networks in HEP
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• Investigating the use of Graph Neural Networks (GNNs) as an alternative to 
Convolutional Neural Networks (CNNs). 

• Building on promising results from the HEP.TrkX collaboration using such methods for 
track reconstruction in the LHC world. 

• Exa.TrkX project building on these results to further develop techniques in HL-LHC, and 
branch out to explore other detector technologies like LArTPCs.
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Simulation

• CCQE beam neutrino interactions 
• Few-GeV energy. 
• Neutrinos travel along beam direction. 
• Typically “clean” interactions – primary 

lepton (e,μ) and minimal hadronic 
activity. 

• Minimal sim/reco chain: 
• GENIE/Geant4 simulation. 
• Detector simulation. 
• Wire deconvolution & hit finding.
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Message-passing networks
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• Message-passing network aggregates information from neighbouring nodes across edges to form new 
features on each node, utilising an attention mechanism to weight up useful edges. 

• Repeat the same network multiple times in order for information to travel further across the graph over multiple 
iterations (the “message passing”). 

• Edge classifier: 
• Input for each node is the features of incoming and outgoing nodes. 
• Two multi-layer perceptrons, using Tanh and sigmoid activations. 
• Outputs sigmoid score on each edge. 

• Node classifier: 
• Uses edge score to aggregate each node’s features with incoming & outgoing edges as input. 
• Two multi-layer perceptrons with Tanh activation. 
• Produces new features for each node.

arxiv:1810.06111
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Message-passing network

Start with graph node features 
(hit position, amplitude, RMS, etc)
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Form edge features by 
pulling in features from incoming 

and outgoing node

Message-passing network
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Perform convolutions on 
edge scores to form a set 

of class-wise probabilities

Message-passing network
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Propagate features from each 
node to adjacent nodes, 

weighted by edge score

Message-passing network
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Perform convolutions  
to form new node features

Message-passing network
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Repeating this process causes 
information to spread across 

the graph

Iteration 0

Message-passing network
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Repeating this process causes 
information to spread across 

the graph

Iteration 1

Message-passing network
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Repeating this process causes 
information to spread across 

the graph

Iteration 2

Message-passing network
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2D reconstruction

• Start with 2D representation and build up 
using graph network. 

• Colour coded according to true 
simulated particle. 

• Three 2D representations of the same 3D 
interaction.
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Induction 1

Induction 2 Collection
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νμ graph construction
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• Connect hits that are adjacent in wire and time with potential edges. 
• Potential edges drawn in grey between nodes.

1.3 GeV νμ -> μ- + p
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νμ graph construction
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• Potential graph edges formed for hits in close proximity (5 wires & 50 time 
ticks). 

• Potential edges then classified as hadronic, muon, shower or false as an 
objective for learning.

• Edges are classified as 
false if the two hits were 
not produced by the 
same particle in the 
underlying simulation. 

• Muon edges are hits 
produced by the primary 
muon, shower edges by 
the primary electron, and 
hadronic edges are the 
remainder.
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νe graph construction

• Potential graph edges formed for hits in close proximity (5 wires & 50 time 
ticks). 

• Potential edges then classified as hadronic, muon, shower or false as an 
objective for learning.

• Edges are classified as 
false if the two hits were 
not produced by the 
same particle in the 
underlying simulation. 

• Muon edges are hits 
produced by the primary 
muon, shower edges by 
the primary electron, and 
hadronic edges are the 
remainder.
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• Build on Exa.TrkX binary edge classifier. 
• Pass messages + form node features independently for each class. 
• Produce 4 edge attention scores on each edge. 
• Take the softmax of those edges with each iteration. 
• If an edge is strongly shower-like, the track-like classes will be weighted down 

accordingly.
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2D edge classification network
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• Current iteration achieves 84% accuracy in classifying graph edges. 
• Performs well on showers, but still room for improvement in tracks.

Ground truth

Model output

hadronic, muon, shower, false
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• Current iteration achieves 84% accuracy in classifying graph edges. 
• Performs well on showers, but still room for improvement in tracks.
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Ground truth

Model output

hadronic, muon, shower, false

2D edge classification network
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Next steps

• In current setup, the three views are categorised independently. 

• Match hits produced concurrently in time to allow information flow between views. 
• Message-passing between planes may aid with clustering within each plane. 

• Long-term goal: combine with heterogeneous graph nodes such as LArTPC optical 
detector system for time matching.

21
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Next steps
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• Edge classification was a natural fit for track-forming in HL-LHC. 

• Clearly shows promise in neutrino physics too, but less well-suited to the problem 
of clustering hits into dense objects. 
• Need a scheme to collapse disparate classified edges into objects. 
• Objective function scores each edge independently, and doesn’t have any 

wider context. 

• Considering newer techniques such as graph pooling and instance segmentation. 

• Move beyond simple CCQE interactions to more complex event topologies 
• Build more sophisticated definitions of the ground truth. 
• Scale up from 2D representations to 3D.


