Data encoding and transmission

Juan Miguel Carceller and Pip Hamilton
University College London, Imperial College London

March 22, 2021



What is Open Metrics?

Last time, it was suggested to have a look at Open Metrics as a way of encoding

It's a standard for sending metrics (telemetry) of a system

Wire format, independent of the way of transport
® [t defines data types, metric types, the information that they contain, how these are named. ..

® More information:

https:
//github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md


https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md
https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md

Some examples

Data Model

This section MUST be read together with the ABNF section. In case of disagreements between the two, the ABNF's restrictions MUST take
precedence. This reduces repetition as the text wire format MUST be supported.

Data Types

Values

Metric values in OpenMetrics MUST be either floating points or integers. Note that ingestors of the format MAY only support floaté4. The non-
real values NaN, +Inf and -Inf MUST be supported. NaN MUST NOT be considered a missing value, but it MAY be used to signal a division by
zero.

Booleans

Boolean values MUST follow 1==true, O==false.

Timestamps

Timestamps MUST be Unix Epoch in seconds. Negative timestamps MAY be used.

Strings

Strings MUST only consist of valid UTF-8 characters and MAY be zero length. NULL (ASCII 0x0) MUST be supported.

Label 2



Some examples

Metric Types

Gauge

Gauges are current measurements, such as bytes of memory currently used or the number of items in a queue. For gauges the absolute value
is what is of interest to a user.

A MetricPoint in a Metric with the type gauge MUST have a single value.

Gauges MAY increase, decrease, or stay constant over time. Even if they only ever go in one direction, they might still be gauges and not
counters. The size of a log file would usually only increase, a resource might decrease, and the limit of a queue size may be constant.

A gauge MAY be used to encode an enum where the enum has many states and changes over time, it is the most efficient but least user
friendly.
Counter

Counters measure discrete events. Common examples are the number of HTTP reguests received, CPU seconds spent, or bytes sent. For
counters how quickly they are increasing over time is what is of interest to a user.

A MetricPoint in a Metric with the type Counter MUST have one value called Total. A Total is a non-NaN and MUST be monotonically non-
decreasing over time, starting from 0.

A MetricPoint in a Metric with the type Counter SHOULD have a Timestamp value called Created. This can help ingestors discern between new
metrics and long-running ones it did not see before.

A MMatricnDaint im a Matricn's Calintare Tat=sl MAY racat +a 1 1F mrecant tha sarracnandine Craatasd tirmas AALIST aslems e oot 14 tha tirmactamm oF tha



Histograms

Histogram

Histograms measure distributions of discrete events. Common examples are the latency of HTTP requests, function runtimes, or /0 request
sizes.

A Histogram MetricPoint MUST contain at least one bucket, and SHOULD contain Sum, and Created values. Every bucket MUST have a
threshold and a value.

Histogram MetricPoints MUST have at least a bucket with an +Inf threshold. Buckets MUST be cumulative. As an example for a metric
representing request latency in seconds its values for buckets with thresholds 1, 2, 3, and +Inf MUST follow value_1 <= value_2 <= value_3 <=
value_+Inf. If ten requests took 1 second each, the values of the 1, 2, 3, and +Inf buckets MUST equal 10.

The +Inf bucket counts all requests. If present, the Sum value MUST equal the Sum of all the measured event values. Bucket thresholds within
a MetricPoint MUST be unique.

Semantically. Sum, and buckets values are counters so MUST NOT be NaN or negative. Negative threshold buckets MAY be used, but then the
Histogram MetricPoint MUST NOT contain a sum value as it would no longer be a counter semantically. Bucket thresholds MUST NOT equal
NaN. Count and bucket values MUST be integers.

A Histogram MetricPoint SHOULD have a Timestamp value called Created. This can help ingestors discern between new metrics and long-
running ones it did not see before.

A Histogram's Metric's LabelSet MUST NOT have a "le" label name.

Bucket values MAY have exemplars. Buckets are cumulative to allow monitoring systems to drop any non-+Inf bucket for performance/anti-
denial-of-service reasons in a way that loses granularity but is still a valid Histogram.




Disadvantages
Advantages

Does anyone know about this standard?
® Open standard

Are these data types enough for what we need?
e Well defined data types (for example, histogram)

It's only a protobuf template with the schema
e Protobuf support

Not a very short read

My opinion: It's not better than a standard that we define ourselves since very likely it will be unknown to the
person who will maintain the system



Alternative to Open Metrics

® Use ROQOT format (without ROOT)
® Prototype not complete but 90% matches an empty ROOT file
® Less than 500 C++ lines, without pulling anything from ROOT

® Can have something working soon

Pros Cons
e ROOT format, well known by many e An implementation for each class is required (for
example TH1). Possibly solved with good
® Decoding is solved, just install ROOT. No need documentation. The developer adding a class or
to maintain encoding and decoding in two algorithm would have to read instructions with
different places protobuf anyways

® What about compression (the prototype does not have any compression)? From what | have seen
ROQT uses libraries that are very common so it should be easy to implement



Alternative to Open Metrics




Alternative to Open Metrics




Transmission

(In NOVA)

e Files are processed in a few machines, a script runs every X minutes to rsync the products to other
machines

® There are cron scripts running in the machines used for monitoring that look for files every Y minutes
and then make the plots

® Features: No queues or anything fancy, the system is greedy in the sense it will send whatever is
available and it will use for the plots everything that is available

e Similar idea for non-real time monitoring? Do we want something simple or more complex?



Backup

10



