Charge sharing

DUNE APA consortium

David Adams BNL March 27, 2021

Charge splitting

Wires are read out with charge-sensitive amplifiers

- Output sampled voltage proportional to input current
- High input impedance (see all the charge)
- But amplifiers are capacitively coupled to the wires
 - 22 nF signal protection on FEMB
 - 3.9 nF blocking on CR board for u and x wires (v is at ground)
 - See diagram on following page
- And wires have some capacitance
 - To neighboring wires, other wire planes, traces, ...
 - Estimates based on 19 pF/m and 30 pF/trace (Bo Yu):
 - $_{\odot}$ $\,$ 150 ± 20 pF for collection
 - \circ 200 ± 30 pF for induction
 - I made up the uncertainties
 - Like to get measurements/calculations from the APA consortium

Together these imply charge splitting and crosstalk

• Not all charge collected on a wire is seen by the amplifier for that wire

ProtoDUNE HV

Figure 4.3: DUNE APA wire bias schematic diagram including the CR board.

D. Adams, BNL

3

More charge splitting

Wires are capacitively coupled to many conductors

- Same plane
 - \circ $\,$ Neighboring wires directly and via traces $\,$
 - Next-neighbors, next-next-neighbors, etc.
 - Concerned both with loss from a wire and gain of signal from neighbors
 - Can be included in 2D deconvolution if we know it
- Other readout planes
 - Wires have roughly equal coupling 100s of wires so signal loss in more important than signal gain
 - Traces presumably have most sharing to (readout) neighbors
 - Not a concern for APA group?
- Anything else
 - Grid plane, field shapers, ...
 - By definition, this charge is lost

Guess at division between these

• About half to each of the first two???

Charge splitting rough estimate

How important is charge splitting?

- Table summarizes the size of the charge splitting using the preceding guesses for detector capacitance
- The last columns are the protoDUNE corrections applied to convert amplified charge to charge on the wire
 - $_{\odot}$ $\,$ If a bit more than half of the charge is shared within the wire plane

/iew	C _{wir} [pF]	C _{amp} [nF]	Q _{lost} /Q	Q _{wir} /Q _{amp}	ProtoDUNE gain factor
u	200	3.31	5.7%	1.060	1.025
v	200	22.0	0.9%	1.009	1.004
х	150	3.31	4.3%	1.045	1.020

5

Actions to take

Want better estimates to replace my guesses

- Guesses endorsed by APA and CE consortia
- Better, analytic calculation, E-field simulation, etc.
- Best, direct measurement

What is most important to evaluate/measure?

- Anything that affects the collection plane charge
 - Induction planes have much (10X?) larger measurement uncertainty and likely have large scale uncertainty
 - Expect these to be normalized to match the collection plane
- 1. External capacitance for each collection wire
 - I.e. capacitance to everything but wires and traces in the same plane
 - This is used to correct the calibration gain measured with charge injection
- 2. Capacitance to each wire (and its traces) in the same collection plane
 - Improve 2D signal deconvolution
 - Account for charge lost to dead or noisy wires
- 3. Same for induction wires

Comments

Measurements on preceding page are in order of importance

- 1. Collection plane external charge loss
 - There are no direct measurements we can make in data to evaluate this
 - Can use physics measurements, e.g. dE/dx but these have systematic uncertainty including electron lifetime, recombination, etc.
- 2. Collection plane internal sharing
 - Might be able to use data to tease this out
 - Event w/o correction, sum over wires will give the correct total charge
- 3. Induction uncertainties like dominated by inherent APA response
 - Can be scaled to match collection
 - Charge measurements dominated by collection plane
- What precision is needed for capacitance measurements?
 - Aim for 1% on charge calibration scale
 - 10-20% capacitance measurement/estimate is adequate if the values are close to those assumed here

Thank you

8