Some Cauidance for Muon Smashers

What experiment should we build?

Assnme we have one of These...

What experiment should we build?

and as many ideas as we need...

What experiment should we build?

50 We Can focus On...

The Muon Smasher's Guide

Hind Al Ali¹, Nima Arkani-Hamed², Ian Banta¹, Sean Benevedes¹, Dario Buttazzo³, Tianji Cai¹, Junyi Cheng¹, Timothy Cohen⁴, Nathaniel Craig¹, Majid Ekhterachian⁵, JiJi Fan⁶, Matthew Forslund⁷, Isabel Garcia Garcia⁸, Samuel Homiller⁹, Seth Koren¹⁰, Giacomo Koszegi¹, Zhen Liu^{5,11}, Qianshu Lu⁹, Kun-Feng Lyu¹², Alberto Mariotti¹³, Amara McCune¹, Patrick Meade⁷, Isobel Ojalvo¹⁴, Umut Oktem¹, Diego Redigolo^{15,16}, Matthew Reece⁹, Filippo Sala¹⁷, Raman Sundrum⁵, Dave Sutherland¹⁸, Andrea Tesi^{16,19}, Timothy Trott¹, Chris Tully¹⁴, Lian-Tao Wang¹⁰, and Menghang Wang¹

¹Department of Physics, University of California, Santa Barbara, CA 93106, USA ²School of Natural Sciences, Institute for Advanced Study, Princeton, NJ, 08540, USA ³INFN, Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy ⁴Institute for Fundamental Science, University of Oregon, Eugene, OR 97403, USA ⁵ Maruland Center for Fundamental Physics, University of Maruland, College Park, MD 20742, USA ⁶Department of Physics, Brown University, Providence, RI 02912, USA ⁷C. N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY 11794, USA ⁸Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA ⁹Department of Physics, Harvard University, Cambridge, MA 02138, USA ¹⁰Department of Physics and Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA ¹¹School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA ¹²Department of Physics, The Hong Kong University of Science and Technology. Clear Water Bay, Kowloon, Hong Kong S.A.R., P.R.C ¹³Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels, Belgium ¹⁴Princeton University, Princeton, NJ 08540, USA ¹⁵ CERN, Theoretical Physics Department, Geneva, Switzerland ¹⁶ INFN Sezione di Firenze, Via G. Sansone 1, I-50019 Sesto Fiorentino, Italy ¹⁷LPTHE, CNRS & Sorbonne Universite, 4 Place Jussieu, F-75252 Paris, France ¹⁸INFN Sezione di Trieste, via Bonomea 265, 34136 Trieste, Italy ¹⁹Department of Physics and Astronomy, University of Florence, Italy

arXiv: 2103.14043

()utline

I. Why Collide Muons? Physics ΊĹ. M. Outlook

The Muon Smasher's Guide

Hind Al Ali¹, Nima Arkani-Hamed², Ian Banta¹, Sean Benevedes¹, Dario Buttazzo³, Tianji Cai¹, Junvi Cheng¹, Timothy Cohen⁴, Nathaniel Craig¹, Majid Ekhterachian⁵, JiJi Fan⁶, Matthew Forslund⁷, Isabel Garcia Garcia⁸, Samuel Homiller⁹, Seth Koren¹⁰ Giacomo Koszegi¹, Zhen Liu^{5,11}, Qianshu Lu⁹, Kun-Feng Lyu¹², Alberto Mariotti¹³ Amara McCune¹, Patrick Meade⁷, Isobel Ojalvo¹⁴, Umut Oktem¹, Diego Redigolo^{15,16}. Matthew Reece⁹, Filippo Sala¹⁷, Raman Sundrum⁵, Dave Sutherland¹⁸, Andrea Tesi^{16,19}, Timothy Trott¹, Chris Tully¹⁴, Lian-Tao Wang¹⁰, and Menghang Wang¹

¹Department of Physics, University of California, Santa Barbara, CA 93106, USA ²School of Natural Sciences, Institute for Advanced Study, Princeton, NJ, 08540, USA ³INFN, Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa. Italy ⁴Institute for Fundamental Science, University of Oregon, Eugene, OR 97403, USA ⁵ Maruland Center for Fundamental Physics, University of Maruland, College Park, MD 20742, USA ⁶Department of Physics, Brown University, Providence, RI 02912, USA ⁷C. N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY 11794, USA ⁸Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA ⁹Department of Physics, Harvard University, Cambridge, MA 02138, USA ¹⁰ Department of Physics and Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA ¹¹School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA ¹²Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., P.R.C. ¹³ Theoretische Natuurkunde and IIHE/ELEM. Vrije Universiteit Brussel. and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels, Belgium ¹⁴Princeton University, Princeton, NJ 08540, USA ¹⁵ CERN, Theoretical Physics Department, Geneva, Switzerland ¹⁶ INFN Sezione di Firenze, Via G. Sansone 1, I-50019 Sesto Fiorentino, Italy ¹⁷LPTHE, CNRS & Sorbonne Universite, 4 Place Jussieu, F-75252 Paris, France ¹⁸INFN Sezione di Trieste, via Bonomea 265, 34136 Trieste, Italy ¹⁹Department of Physics and Astronomy, University of Florence, Italy

arXiv: 2103.14043

Contents

1

3

5

1	Intr	oduction	3												
2	Mu	ons vs. Protons	6												
	2.1	Muon annihilation	6												
	2.2	Vector boson fusion	9												
	2.3	Annihilation vs. VBF	10												
	2.4	Signal vs. background	12												
3	Mu	on Colliders Are Gauge Boson Colliders	13												
	3.1	From the effective vector approximation to PDFs	15												
	3.2	PDFs with broken electroweak symmetry	16												
	3.3	Impact of subleading logs	19												
	3.4	Finite mass effects	22												
4	Phy	sics	23												
	4.1	Electroweak symmetry breaking	24												
	4.2	Dark matter	38												
	4.3	Naturalness	44												
5	Con	nplementarity	58												
	5.1	EDMs	58												
	5.2	Flavor	60												
	5.3	Gravitational waves	67												
6	Sun	nmary and Future Directions	69												
Aj	open	dix	72												
A	Sim	mplified Models 7													
	A.1	Standard Model	73												
	A.2	Supersymmetry	74												
	A.3	Vector-like quarks	79												
	A.4	Higgs portal	80												
	A.5	Hidden valleys	88												
	A.6	Axion-like particles	89												

References

I. Why Collide Muons?

Evolution of the microscope

Muon collider ??

What to collide?

What to collide?

· Charged

· Heavier is better

Stable(ish)

But fundamental is vice too...

The much is trending

The New Hork Times

PLAY THE CROSSWORD Account

A Tiny Particle's Wobble Could Upend the Known Laws of Physics

Experiments with particles known as muons suggest that there are forms of matter and energy vital to the nature and evolution of the cosmos that are not yet known to science.

f 🔉 🖌 🕿 🍝 🗌 536

The Muon g-2 ring, at the Fermi National Accelerator Laboratory in Batavia, Ill., operates at minus 450 degrees Fahrenheit and studies the wobble of muons as they travel through the magnetic field. Reidar Hahn/Fermilab, via U.S. Department of Energy

But Muons decay... Poses Many experimental challenges

Beam induced background => 222.5

Let's be "reasonable"

Next generation experiment at **‡** Fermilab and before we retire ⇒ 15 5 10 TeV

What is the physics case?

Curves of equivalent

2-22

Muons have PDFs too! 5 >> Mw >> Mm Q = 10 TeV $\sqrt{s} = 10 \text{ TeV}$ 0.50 $\gamma |Z_T| Z_T \gamma$ $dL_{ij}/d\tau$ 0.100 f(x,Q) $W_T W_T$ $W_0 W_0$ 0.010 0.10 Z_+ $- Z_0 Z_0$ 0.05 ---- Wo 0.001 $---- Z_0$ 0.01 10^{-4} 0.500.500.05 0.10 0.050.10 $\sqrt{\tau}$ x

Parton $\frac{dz}{dz} = \frac{1}{1+\delta_{ij}} \int \frac{dx}{x} \left[f_i(x) f_j(x) + (i\omega_j) \right]$

Annihilation VS. UBF

 ${\rm Log_{10}}[\sigma_{\rm ann}/\sigma_{\rm VBF}]$ for SU(2) singlet

I. Physics · Higgs/EW

- · Dark Matter
- · SUSY

Production Hi 775

Higgs Production

$$\sqrt{5} = 10 \, \text{TeV} \implies \mathcal{O}(10^7) \text{ Single Higgs events}$$

 $\mathcal{J} = 10 \, \text{ab}^{-1} \qquad \mathcal{O}(10^4) \quad \text{di-Higgs events}$

Higgs Production

Production	Decay	Rate [fb]	$A\cdot\epsilon~[\%]$	$\Delta\sigma/\sigma~[\%]$					
	bb	490	7.4	0.17					
	cc	24	1.4	1.7					
	jj	72	37	0.19					
	$ au^+ au^-$	53	6.5	0.54					
	$WW^*(jj\ell u)$	53	21	0.30					
W fusion	$WW^*(4j)$	86	4.9	0.49					
W -Iusion	$ZZ^*(4\ell)$	0.1	6.6	12					
	$ZZ^*(jj\ell^+\ell^-)$	2.1	8.9	2.3					
	$ZZ^*(4j)$	11	4.6	1.4					
	$\gamma\gamma$	1.9	33	1.3					
	$Z(jj)\gamma$	0.9	27	2.0					
	$\mu^+\mu^-$	0.2	37	0.37					
7 fusion	bb	51	8.1	0.49					
2-1051011	$WW^*(4j)$	8.9	6.2	1.3					
W-fusion tth	bb	0.06	12	12					

 $10 \text{ TeV} @ 10 \text{ ab}^{-1}$

Signal only selection

Higgs Production

Fit Result [%]									
	10 TeV Muon Collider	with HL-LHC	with HL-LHC + 250 GeV e^+e^-						
κ_W	0.06	0.06	0.06						
κ_Z	0.23	0.22	0.10						
κ_g	0.15	0.15	0.15						
κ_γ	0.64	0.57	0.57						
$\kappa_{Z\gamma}$	1.0	1.0	0.97						
κ_c	0.89	0.89	0.79						
κ_t	6.0	2.8	2.8						
κ_b	0.16	0.16	0.15						
κ_{μ}	2.0	1.8	1.8						
$\kappa_{ au}$	0.31	0.30	0.27						

Id framework Signal only

Higgs Production

<i>к</i> -0	HL-LHC	LHeC	HE	-LHC		ILC		8	CLIC	;	CEPC	FC	C-ee	FCC-ee/	$\mu^+\mu^-$
fit			S2	S2′	250	500	1000	380	1500	3000		240	365	eh/hh	10000
$\kappa_W \ [\%]$	1.7	0.75	1.4	0.98	1.8	0.29	0.24	0.86	0.16	0.11	1.3	1.3	0.43	0.14	0.06
$\kappa_Z \ [\%]$	1.5	1.2	1.3	0.9	0.29	0.23	0.22	0.5	0.26	0.23	0.14	0.20	0.17	0.12	0.23
$\kappa_g \ [\%]$	2.3	3.6	1.9	1.2	2.3	0.97	0.66	2.5	1.3	0.9	1.5	1.7	1.0	0.49	0.15
$\kappa_\gamma ~[\%]$	1.9	7.6	1.6	1.2	6.7	3.4	1.9	98*	5.0	2.2	3.7	4.7	3.9	0.29	0.64
$\kappa_{Z\gamma}$ [%]	10.	-	5.7	3.8	99*	86*	85*	$120\star$	15	6.9	8.2	81*	$75\star$	0.69	1.0
$\kappa_c \ [\%]$	_	4.1	-	_	2.5	1.3	0.9	4.3	1.8	1.4	2.2	1.8	1.3	0.95	0.89
$\kappa_t \; [\%]$	3.3	-	2.8	1.7	—	6.9	1.6	—	_	2.7	_	-	-	1.0	6.0
$\kappa_b \; [\%]$	3.6	2.1	3.2	2.3	1.8	0.58	0.48	1.9	0.46	0.37	1.2	1.3	0.67	0.43	0.16
κ_{μ} [%]	4.6	—	2.5	1.7	15	9.4	6.2	$320\star$	13	5.8	8.9	10	8.9	0.41	2.0
$\kappa_{ au}$ [%]	1.9	3.3	1.5	1.1	1.9	0.70	0.57	3.0	1.3	0.88	1.3	1.4	0.73	0.44	0.31

(Not fair to compare with our signal only analysis)

Modified Top Yuhawa Yt -> Yt (1+ 6BSM)

Modified Top Yuhawa Y= -> Y= (1+6BSN)

Extra Higgs Bosons $\neg \varphi \, v \bar{v} \rightarrow h h v \bar{v}$ 10^{-1} 10^{5} 95% limit on $\sigma(\mu\mu \to \phi\nu\nu)$ [fb] SM background 10^{4} 6 TeV Events / 300 GeV 10^{-2} 1000 $m_{\phi} = 5 \text{ TeV}, s_{\gamma}^2 = 10^{-3}$ 10 TeV 14 TeV 100 $m_{\phi} = 20 \text{ TeV}, s_{\gamma}^2 = 10^{-3}$ 10-3 10 30 TeV 0.1 0 10^{-4} 10 15 20 25 30 5 5 15 20 25 30 0 10 m_{hh} [TeV] m_{ϕ} [TeV]

For di-Higgs ZHDM Study, See arXiv: 2102.08386

WIMP Dark Matter Models considered

1 1

Μ	lodel	Thermal	5σ discovery coverage (TeV)						
(colo	(r, n, Y)	target	mono- γ	mono- μ	di- μ 's	disp. tracks			
$(1,2,\frac{1}{2})$	Dirac	1.1 TeV		2.8		1.8 - 3.7			
(1,3,0)	Majorana	2.8 TeV		3.7		13 - 14			
$(1,\!3,\!\epsilon)$	Dirac	$2.0 { m TeV}$	0.9	4.6		13 - 14			
(1,5,0)	Majorana	14 TeV	3.1	7.0	3.1	10 - 14			
$(1,5,\epsilon)$	Dirac	6.6 TeV	6.9	7.8	4.2	11 - 14			
(1,7,0)	Majorana	$23 { m TeV}$	14	8.6	6.1	8.1 - 12			
$(1,7,\epsilon)$	Dirac	16 TeV	13	9.2	7.4	8.6 - 13			

see arXiv: 2009.11287

WIMP Dark Matter

Narrow bars include dissappearing tracks

III. Ontlook

Outlook

A naive Comparison for Single Higgs production

- · Polarization => factor of Z
- Log growth of rate from
 3TeV > 10 TeV ⇒ factor of 2

=> 3 TeV CLIC v/pol~ 10 TeV mp and muon collider has more hh production

Outlook Many fascinating accelerator and detector design questions!! · Timing and tagging · Polarization VS Luminosity • 171 < 2.5 improved? · What VS?

Outlook

A 10 TeV muon collider is viable and exciting opportunity for future US HEP program!