High Energy Muon Collider Technology needs

Katsuya Yonehara

Fermilab

Great thank to Don, Yuri, Sergei, and Alvin

They inspired me good life and good science.

Outline

- Motivation of HEP muon colliders
- Collider table from MAP
- Final cooling channel (possible "game changer")

○ 30-Tesla solenoid channel

 Parametric resonance Ionization Cooling channel (introduce low emittance scheme)

- Beam component with low emittance scheme
- Extend COM and Luminosity for 10 TeV MC (Neuffer's speculation)
- Summary

Physics in HEP muon collider¹

Equivalent COM energy of $\mu\mu$ and pp

 $\mu\mu$ is one of the best tools to study Beyond Standard Model

We've already seen violations of the SM in LHCb and g-2 experiments!

Scenarios from Muon Accelerator Program

Parameter	Units	Higgs		Multi-TeV		
CoM Energy	TeV	0.126	1.5	3.0	6.0	$f = \frac{f_{col} \cdot n_{\mu_+} \cdot n_{\mu} \cdot \beta \cdot \gamma}{f_{col} \cdot n_{\mu_+} \cdot n_{\mu} \cdot \beta \cdot \gamma}$
Avg. Luminosity	$10^{34} \text{cm}^{-2} \text{s}^{-1}$	0.008	1.25	4.4	12	$ \sum_{x=0}^{\infty} 4\pi \left(\varepsilon_{x,n}\cdot\beta_{x}^{*}\right)^{1/2} \cdot \left(\varepsilon_{y,n}\cdot\beta_{y}^{*}\right)^{1/2} $
Beam Energy Spread	%	0.004	0.1	0.1	0.1	
Higgs Production/ 10^7 sec		13'500	37'500	200'000	820'000	
Circumference	km	0.3	2.5	4.5	6	
No. of IP's		1	2	2	2	
Repetition Rate	Hz	15	15	12	6	
$\beta^*_{x,y}$	cm	1.7	1	0.5	0.25	
No. muons/bunch	10^{12}	4	2	2	2	
Norm. Trans. Emittance, $\varepsilon_{\rm TN}$	$\mu\mathrm{m} extsf{-rad}$	200	25	25	25	
Norm. Long. Emittance, $\varepsilon_{\rm LN}$	$\mu\mathrm{m} ext{-rad}$	1.5	70	70	70	
Bunch Length, $\sigma_{\rm S}$	cm	6.3	1	0.5	0.2	
Proton Driver Power	$\mathbf{M}\mathbf{W}$	4	4	4	1.6	
Wall Plug Power	$\mathbf{M}\mathbf{W}$	200	216	230	270	

Table 1: Main parameters of the proton driver muon facilities

Beam components are designed to realize COM energy and Luminosity

Final Cooling Channel (MAP baseline design)²

- 30-Tesla solenoid channel
- 14 segments (10 m-long each)
- Muons lose a kinetic energy to gain a low beta function
- Transverse emittance goes down while longitudinal one goes up (reverse emittance exchange)
- Transmission is 50 %

Introduce Parametric resonance Ionization Cooling channel³

4/14/21

Shrink transverse emittance by factor 10 while maintaining longitudinal emittance in PIC

 $\theta_a^2 = \frac{3}{2} \frac{(Z+1)}{\nu R^2} \frac{m_e}{m_e}.$ Equilibrium momentum sp. $\left(\frac{\Delta p}{n}\right)^2 = \frac{3}{8} \frac{(\gamma^2 + 1)}{\gamma \beta^2} \frac{m_e}{m} \frac{1}{loa}$

- Ionization cooling shrinks beam angular spread (x').
- Conventional ionization cooling channel generates a low beta function with ordinally phase space oscillation (top left picture). Thus, a very strong magnetic field is needed for a final cooling.

- In PIC scheme, a half-integer resonance is applied to excite the phase space in hyperbolic motion (top right picture).
- As a result, the achievable transverse emittance is lower than the conventional cooling channel, and **independent** from strength of magnetic field

 $\beta = v/c$, γ is a Lorentz factor, w is a thickness of cooling material, High Energy MC, T log is the Coulomb logarithm.

Cooling simulation

Parameter	Unit	Initial	Final
Muon beam momentum, p	MeV/c	250	250
Number of particles per bunch, N_b	10^{10}	1	1
Be $(Z = 4)$ absorber thickness, w	mm	20	2
Normalized transverse emittance (rms), $\varepsilon_x = \varepsilon_y$	μm	230	23
Beam size at absorbers (rms), $\sigma_a = \sigma_x = \sigma_y$	mm	0.7	0.1
Angular spread at absorbers (rms), $\theta_a = \theta_x = \theta_y$	mrad	130	130
Momentum spread (rms), $\Delta p/p$	%	2	2
Bunch length (rms), σ_z	mm	10	10

Analytical estimation

- So far, the cooling simulation is made without stochastic process (no energy straggling, no multiple scattering).
- Skew-PIC is the most up-to-date lattice, which realizes a large dynamic aperture as designed.
- Plasma focusing (see next slide) significantly mitigates the aberration which is caused in a cooling absorber

Plasma focusing⁵

- Strong radial beam focusing will appear in a dense Hydrogen gas-filled RF cavity
 - Space charge is neutralized by dielectric polarization of gas plasma, as a result, beam induces a toroidal self-focusing field

- Can this effect be adopted for cooling channel design?
- Easy to induce a resonance in a channel of azimuthally symmetric lenses
 - Focal parameter of each lens must be less than 1/4th of the distance between adjacent lenses
- Will strong radial plasma focusing allow one to tame the beam smear and take advantage of parametric resonance ionization cooling?

Reverse emittance exchange⁶

Schematic diagram of reverse emittance exchange

Analytical estimation of final emittance with PIC lattice (no magnetic field dependence)

Parameter	Unit	Initial	After	After
			1^{st}	2^{nd}
			stage	stage
Momentum	MeV/c	100	100	2500
Bunch length	cm	.5	10	10
Momentum	%	3	3	3
spread				
Longitudinal	cm	1.5×10^{-2}	.15	7.5
norm. emittance				
Transverse	μm	25	8	2
norm. emittance				

4/14/21

*2nd stage with high energy muons is proposed to obtain a positive dEdx slope (upper limit is determined by energy straggling)

Low emittance scheme and high transmission efficiency

 $\mathcal{L} = \frac{f_{col} \cdot n_{\mu_{+}} \cdot n_{\mu_{-}} \cdot \beta \cdot \gamma}{4\pi (\varepsilon_{x,n} \cdot \beta_{x}^{*})^{1/2} \cdot (\varepsilon_{y,n} \cdot \beta_{y}^{*})^{1/2}}$

Goal of low emittance scheme

- $\varepsilon_{x,y,n} = 25 \ \mu rad \rightarrow 2 \ \mu rad$ (Low emittance scheme)
- Transmission efficiency in 6D cooling = 20 % \rightarrow > 30 %
- Transmission efficiency in final cooling = 50 % \rightarrow > 70 %
- Luminosity = 25 × Original luminosity
- Use the luminosity gain to reduce the beam power

Proton Driver & Front end

MAP baseline

- 4 Mega-Watt 8 GeV proton beam
- Hg target

Low emittance scheme

- Probably < 1 Mega-Watt 8 GeV proton beam
- Conventional graphite target will be available
- Maybe create pions outside capture solenoid which will significantly mitigate radiological problems

Cooling

MAP baseline

Helical FOFO Snake channel⁷

- Accept both sign muons
- Simple alternate solenoid
 lattice
- Ready for initial engineering study
- Appropriate for Initial 6D cooling

MICE and MTA RF measurements are very positive for ionization cooling design

Rectilinear channel⁸

- Alternate solenoid makes a beta function half
- Initial engineering study done
- Cooling performance is limited by space charge

Helical channel⁹

- Shortest length (high transmission)
- No longitudinal limit because of negative slip factor (no space charge issue)
- Extra transverse focusing by selfinduced toroidal field
- Poor matching scheme

Low emittance scheme

- Significantly reduce space charge effect
- Matching issue will be mitigated if pions/muons are not magnetized

Acceleration & Collider ring

MAP baseline

- Quick acceleration to minimize muon decay
- Challenge to accelerate a short bunch length intense muon beam
- Decay electron & Neutrino radiation are intrinsic issue

Low emittance scheme

- Space charge effect is reduced
- Muon lifetime still issue; quick acceleration needed
- Decay electron & Neutrino radiation are still an issue (though the risk is significantly reduced)

Conceptual design study of Large bore Nb₃Sn dipole magnet¹⁰

dipole (right). The ring center is to the right in these figures.

Important relationships

D. Neuffer

>Bending Radius >Muon Lifetime: •2.2 $\gamma \mu s$ = 0.0208 E (TeV) s 0.104 s at 5 TeV $R = \frac{B\rho}{B} = \frac{P(GeV/c)}{0.3B(T)}m = \frac{P(TeV/c)}{0.3B(T)}km$ >Path Length •660 βγ m -> 6250 E (TeV) km Rapid Cycling Synchrotron • B_{typ} = ~1.5 T, 15- 60 Hz B.....: DC B_{min} : pulsed from $-B_{min}$ to $+B_m$ Packing factor II< C= 2π E_{beam} /0.3, e.g. 146 T×km Hybrid – High field + pulsed Number of Turns (ring) • Example: B_{max}=8T B_{pulsed}=2.0, f= 0.25 $\mathbf{B}_{\text{ave}} = \mathbf{f} \, \mathbf{B}_{\text{max}} + (1 - \mathbf{f}) \mathbf{B}_{\text{pulsed}}$ → 3.5 / 0.5 T path length = $\frac{660 P_{\mu}}{0.3 B_{ave}} \approx 300 B_{ave}$ turns \mathbf{m}_{μ} $2\pi \mathbf{P}_{\mu}$ circumference In 2.2 γ µs

 (luminosity lifetime/pathlength a factor of 2 less because both μ decay)

Bending, Accelerating fields: D. Neuffer

Conventional (Ferric)-~ 2T

> Superconducting –NbTi • Tevatron ~4 T • LHC ~8 T > Superconducting Nb₃Sn • HL-LHC + → 16T

≻HTS superconductor ...
•REBCO → 40 T ?

>Pulsed magnets
•±2 T → ± 4 T ?? ~200T/s

20T/s HTS record

4/1

• Piekarz et al. NIM A 943, 162490 (2019)

SRF accelerating fields
 •17 MV/m (650 MHz PIP-II)
 •30 MV/m (1300 MHz SLS-2)

≻Future upgrades •40 → 50 MV/m → 80??

>Pulsed rf – Cu \rightarrow ??

50 → 100 MV /m

~4 TeV (2 x 2) Muon Collider (~2005)

Muon Collider
 •2 TeV ring (~8T magnets)

RLA accelerator

~18 turns
 2km linacs -50 GeV each
 ~30 MV/m rf
 Arcs are ~8T magnets each

 Not quite site filler
 •Easily expand to 2.5x2.5

 •(5 TeV)

Double gradients, B_{max} •10 TeV (5 x 5) - (16 T - 60 MV/m)

D. Neuffer

Summary

- Many benefits by improving final cooling channel

 Most radiological issues will be mitigated
 Beam design becomes more realistic
- Variable goal COM and Luminosity

Depends on available magnetic field strength and RF gradients
 COM 5 TeV Collider is relatively accessible goal (D. Neuffer)
 COM 10 TeV is a stretch goal (D. Neuffer)

Require 16 T dipoles, +/- 4 T rapid cycling, SRF 60 MV/m

Reference

- 1. "Muon colliders", J.P. Delahaye et al., arXiv:1901.06150v1, 2019; "Vector boson fusion at multi-TeV muon colliders", A. Costantini et al., JHEP09 (2020) 080; "Electroweak couplings of the Higgs boson at a multi-TeV muon collider", T. Han et al, PRD 103, 013002 (2021).
- 2. "Final cooling for a High-energy high-luminosity lepton collider", D. Neuffer et al, JINST 12 T07003, 2017.
- 3. "Motivations of a Muon Collider for the Higgs sector", C. Rubbia, <u>https://indico.cern.ch/event/1016248/contributions/4282366/</u>
- 4. Ya.S. Derbenev, V.S. Morozov, A. Afanasev, K.B. Beard, R. Johnson, B. Erdelyi, J.A. Maloney, "Parametric-resonance Ionization Cooling of Muon Beams", arXiv:1205.3476 [physics.acc-ph] (2012). https://arxiv.org/abs/1205.3476; A. Afanasev, Y. Derbenev, V.S. Morozov, A. Sy, R.P. Johnson, "Skew-quad parametric-resonance ionization cooling: theory and modeling", in Proc. IPAC'15, TUPHA013, p. 1993. http://accelconf.web.cern.ch/IPAC2015/papers/tupha013.pdf;
- 5. "Study of Helical Cooling Channel for Intense Muon Sources", K. Yonehara, presentation at COOL'15 International Workshop, 2015; "Unconventional ideas for ionization cooling of muons", T.L. Hart et al, JINST 15 P03004, 2020.
- 6. "Research and development of future muon colliders", K. Yonehara, Proc. of IPAC'12; "Parametric Resonance Ionization Cooling and Reverse Emittance Exchange for Muon Colliders", Y.S. Derbenev, COOL'05 International Workshop, 2005
- 7. "Helical FOFO Snake for Initial Six-Dimensional Cooling of Muons", Y. Alexahin, arXiv:1806.07517v1, 2018.
- 8. "Rectilinear six-dimensional ionization cooling channel for a muon collider: A theoretical and numerical study", D. Stratakis et al, PRSTAB 18, 031003, 2015; "Influence of space-charge fields on the cooling progress of muon beams", D. Stratakis et al, PRSTAB 18, 044201, 2015.
- 9. "Six-dimensional muon beam cooling using a homogeneous absorber: Concepts, beam dynamics, cooling decrements, and equilibrium emittances in a helical dipole channel", Y. Derbenev et al, PRSTAB 8, 041002, 2005; "A Helical Cooling Channel System for Muon Colliders", K. Yonehara et al, arXiv:1202.0810, 2012.
- 10. "Large-aperture High-field Nb3Sn Dipole magnets", A.V. Zlobin et al, Proc. Of IPAC'18, 2018; "The Higgs Factory Muon Collider Superconducting Magnets and Their Protection Against Beam Decay Radiation", N.V. Mokhov et al, JINST 13, P10024, 2018.