PHYSICS OPPORTUNITIES AT MUON COLLIDERS

Tao Han, Univ. of Pittsburgh

The 4th Session of PLUB workshop April 6, 2021

- 1. A Higgs factory
- 2. A Multi-TeV Muon Collider
- SM expectations:
 - QED & QCD
 - EW physics at ultra-high energies
 - Precision Higgs measurement
- Beyond the SM:
 - WIMP Dark Matter
 - Extended Higgs sector

Lots of recent works, not covered here -- my apologies

- D. Buttazzo, D. Redogolo, F. Sala, arXiv:1807.04743 (VBF to Higgs)
- A. Costantini, F. Maltoni, et al., arXiv:2005.10289 (VBF to NP)
- M. Chiesa, F. Maltoni, L. Mantani, B. Mele, F. Piccinini, and X. Zhao, arXiv:2005.10289 (SM Higgs)
- R. Capdevilla, D. Curtin, Y. Kahn, G. Krnjaic, arXiv:2006.16277; arXiv:2101.10334 (g-2, flavor)
- P. Bandyopadhyay, A. Costantini et al., arXiv:2010.02597 (Higgs)
- D. Buttazzo, P. Paradisi, arXiv:2012.02769 (g-2)
- W. Yin, M. Yamaguchi, arXiv:2012.03928 (g-2)
- R. Capdevilla, F. Meloni, R. Simoniello, and J. Zurita, arXiv:2012.11292 (MD)
- D. Buttazzo, F. Franceschini, A. Wulzer, arXiv:2012.11555 (general)
- G.-Y. Huang, F. Queiroz, W. Rodejohann, arXiv:2101.04956; arXiv:2103.01617 (flavor)
- W. Liu, K.-P. Xie, arXiv:2101.10469 (EWPT)
- H. Ali, N. Arkani-Hamed, et al, arXiv:2103.14043 (broad coverage on NP)

• • • • • •

Collider benchmark points:

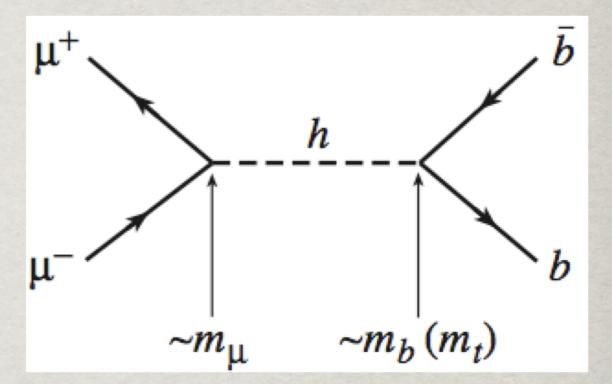
The Higgs factory:

$$E_{cm} = m_H$$
 $L \sim 1 \text{ fb}^{-1}/\text{yr}$
 $\Delta E_{cm} \sim 5 \text{ MeV}$

Parameter	Units	Higgs
CoM Energy	TeV	0.126
Avg. Luminosity	$10^{34} \text{cm}^{-2} \text{s}^{-1}$	0.008
Beam Energy Spread	%	0.004
Higgs Production/10 ⁷ sec		13'500
Circumference	km	0.3

Multi-TeV colliders:

Lumi-scaling scheme: $\sigma L \sim \text{const.}$


$$L \gtrsim \frac{5 \text{ years}}{\text{time}} \left(\frac{\sqrt{s_{\mu}}}{10 \text{ TeV}} \right)^2 2 10^{35} \text{cm}^{-2} \text{s}^{-1}$$

The aggressive choices:
$$(3 \text{ TeV}/10 \text{ TeV})^2 \mathbf{6} \cdot 10^{35}$$
 $\sqrt{s} = 3, 6, 10, 14, 30 \text{ and } 100 \text{ TeV}, \quad \mathcal{L} = 1, 4, 10, 20, 90, \text{ and } 1000 \text{ ab}^{-1}$

European Strategy, arXiv:1910.11775; arXiv:1901.06150; arXiv:2007.15684.

1. A HIGGS FACTORY

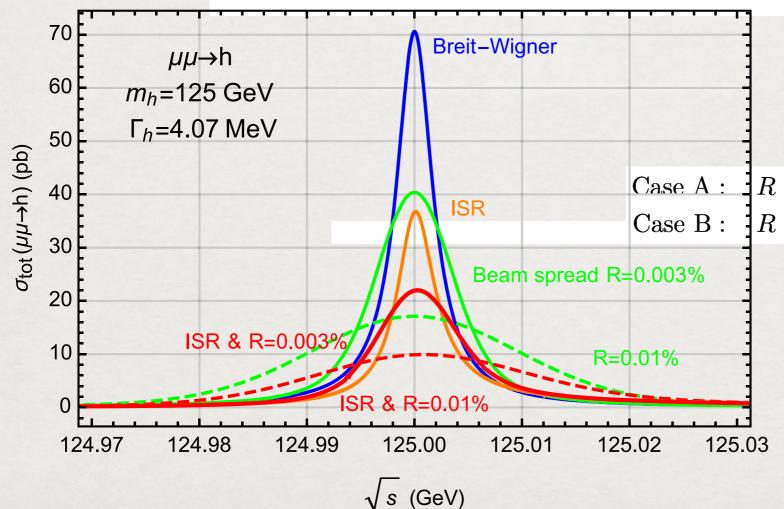
Resonant Production:

$$\sigma(\mu^{+}\mu^{-} \to h \to X) = \frac{4\pi\Gamma_{h}^{2}\text{Br}(h \to \mu^{+}\mu^{-})\text{Br}(h \to X)}{(\hat{s} - m_{h}^{2})^{2} + \Gamma_{h}^{2}m_{h}^{2}}.$$

$$\sigma_{peak}(\mu^+\mu^- \to h) = \frac{4\pi}{m_h^2} BR(h \to \mu^+\mu^-)$$

 $\approx 41 \text{ pb at } m_h = 125 \text{ GeV}.$

About O(40k) events produced per fb-1


At $m_b=125$ GeV, $\Gamma_b=4.2$ MeV

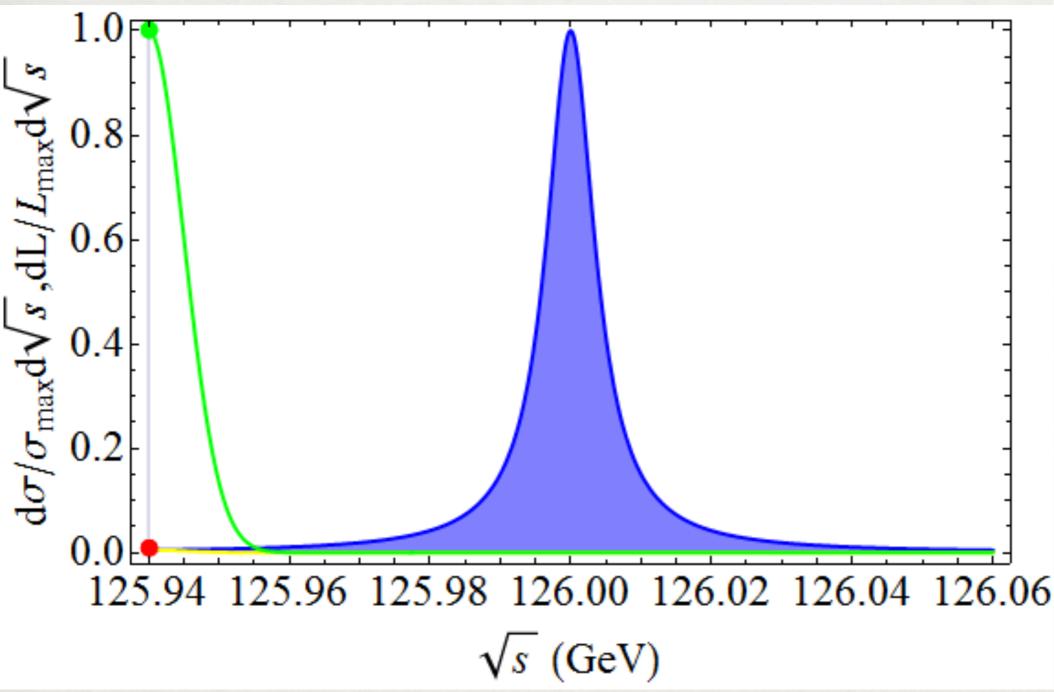
$$\frac{\exp[-(\sqrt{\hat{s}} - \sqrt{s})^2/(2\sigma_{\sqrt{s}}^2)]}{\sqrt{2\pi}\sigma_{\sqrt{s}}} \frac{4\pi\Gamma(h \to \mu\mu)\Gamma(h \to X)}{(\hat{s} - m_h^2)^2 + m_h^2[\Gamma_h^{\text{tot}}]^2}$$

$$\frac{4\pi\Gamma(h\to\mu\mu)\Gamma(h\to X)}{(\hat{s}-m_h^2)^2+m_h^2[\Gamma_h^{\text{tot}}]^2}$$

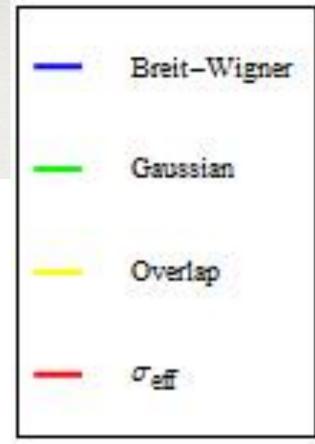
$$\sigma_{\text{eff}}(s) = \int d\sqrt{\hat{s}} \, \frac{dL(\sqrt{s})}{d\sqrt{\hat{s}}} \sigma(\mu^{+}\mu^{-} \to h \to X)$$

$$\propto \begin{cases} \Gamma_{h}^{2} B / [(s - m_{h}^{2})^{2} + \Gamma_{h}^{2} m_{h}^{2}] & (\Delta \ll \Gamma_{h}), \\ B \exp\left[\frac{-(m_{h} - \sqrt{s})^{2}}{2\Delta^{2}}\right] (\frac{\Gamma_{h}}{\Delta}) / m_{h}^{2} & (\Delta \gg \Gamma_{h}). \end{cases}$$

"Muon Collider Quartet":


Barger-Berger-Gunion-Han PRL & Phys. Report (1995)

Case A:
$$R = 0.01\%$$
 ($\Delta = 8.9 \,\text{MeV}$), $L = 0.5 \,\text{fb}^{-1}$, Case B: $R = 0.003\%$ ($\Delta = 2.7 \,\text{MeV}$), $L = 1 \,\text{fb}^{-1}$.


TH, Liu: 1210.7803; s, TH, Liu: 1607.03210

Ideal, conceivable case:

 $(\Delta = 5 \text{ MeV}, \quad \Gamma_{\rm h} \approx 4.2 \text{ MeV})$

An optimal fitting would reveal Γ_h

Achievable accuracy at the Higgs factory:

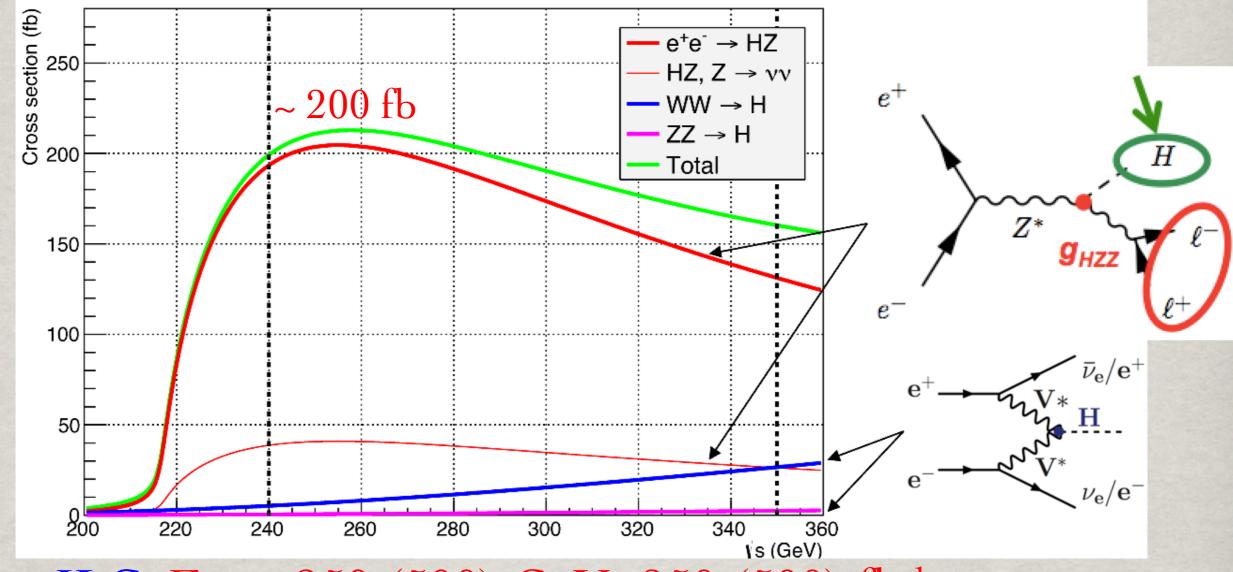
TABLE I. Effective cross sections (in pb) at the resonance $\sqrt{s} = m_h$ for two choices of beam energy resolutions R and two leading decay channels, with the SM branching fractions $Br_{b\bar{b}} = 56\%$ and $Br_{WW^*} = 23\%$ [9]. a cone angle cut: $10^{\circ} < \theta < 170^{\circ}$

	$\mu^+\mu^- \rightarrow h$	$h \rightarrow b\bar{b}$		$h \rightarrow WW^*$		
R (%)	$\sigma_{ m eff}$ (pb)	$\sigma_{ ext{Sig}}$	$\sigma_{ ext{Bkg}}$	$\sigma_{ ext{Sig}}$	$\sigma_{ m Bkg}$	
0.01	16	76		3.7		
0.003	38	18	15	5.5	0.051	

Good S/B, S/ $\sqrt{B} \rightarrow \%$ accuracies

Table 3

Fitting accuracies for one standard deviation of Γ_h , B and m_h of the SM Higgs with the scanning scheme for two representative luminosities per step and two benchmark beam energy spread parameters.


$\Gamma_h = 4.07 \text{ MeV}$	L_{step} (fb ⁻¹)	$\delta\Gamma_h$ (MeV)	δB	δm_h (MeV)
R = 0.01%	0.05	0.79	3.0%	0.36
	0.2	0.39	1.1%	0.18
R = 0.003%	0.05	0.30	2.5%	0.14
	0.2	0.14	0.8%	0.07

~ 3.5%

TH, Liu: 1210.7803;

Greco, TH, Liu: 1607.03210

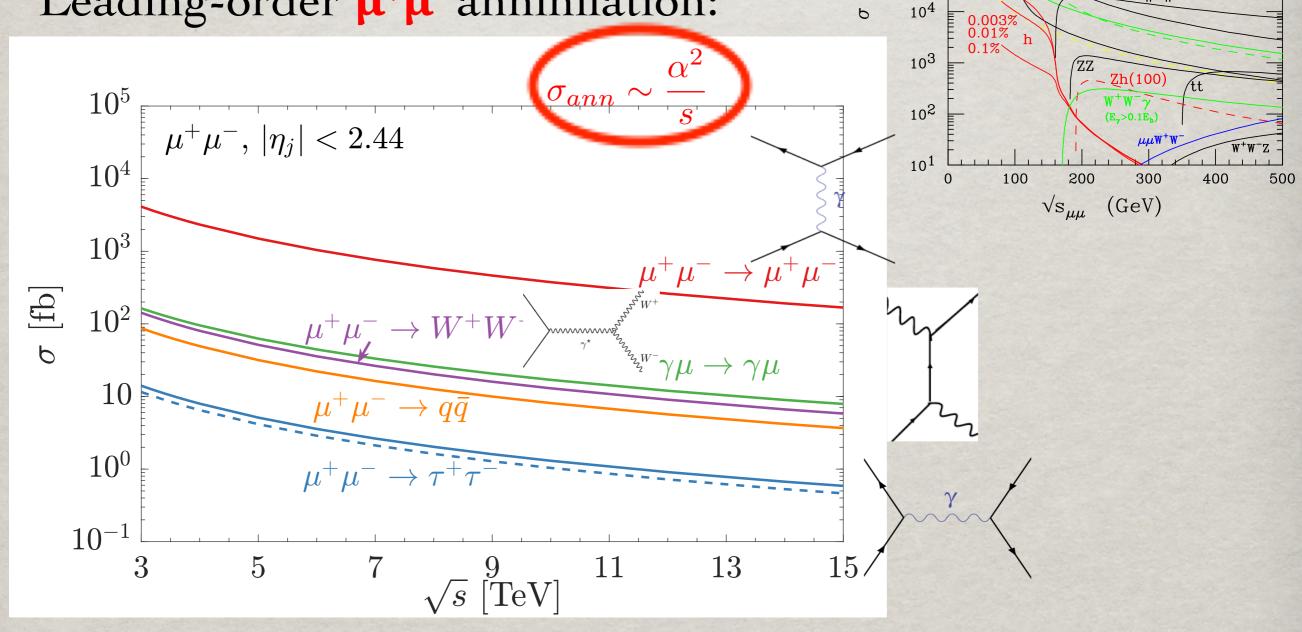
Comparison w/ an e⁺e⁻ Higgs-Factory: 10⁶ Higgs

ILC: $E_{cm} = 250 (500) \text{ GeV}, 250 (500) \text{ fb}^{-1}$

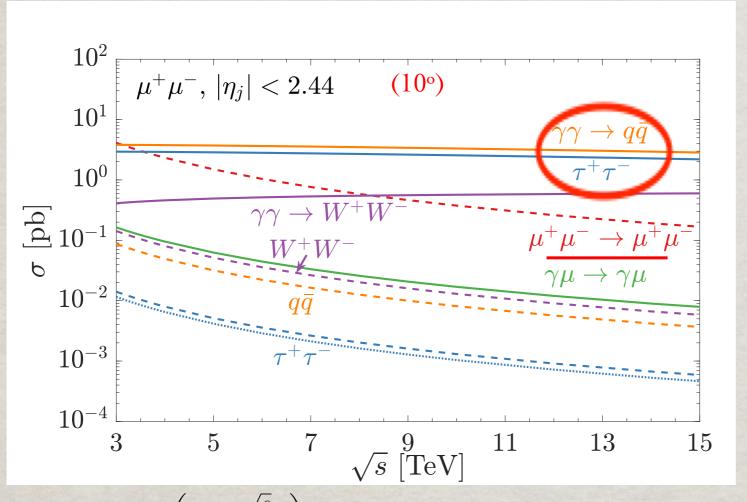
• Model-independent measurement: ILC Report: 1308.6176 $\Gamma_{H} \sim 6\%, \quad \Delta m_{H} \sim 30 \ MeV$ (HL-LHC: assume SM, $\Gamma_{H} \sim 5$ -8%, $\Delta m_{H} \sim 50 \ MeV$)

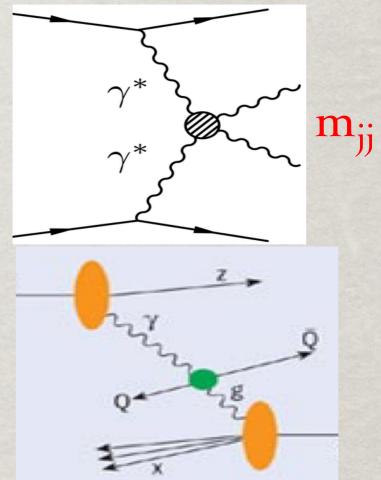
• CEPC/FCC-ee: 10^6 Higgs: $\Gamma_{\rm H} \sim 1\%$, $\Delta m_{\rm H} \sim 5$ MeV. TLEP Report: 1308.6176; CEPC & FCC-ee CDRs

2. A MULTI-TEV MUON COLLIDER


107

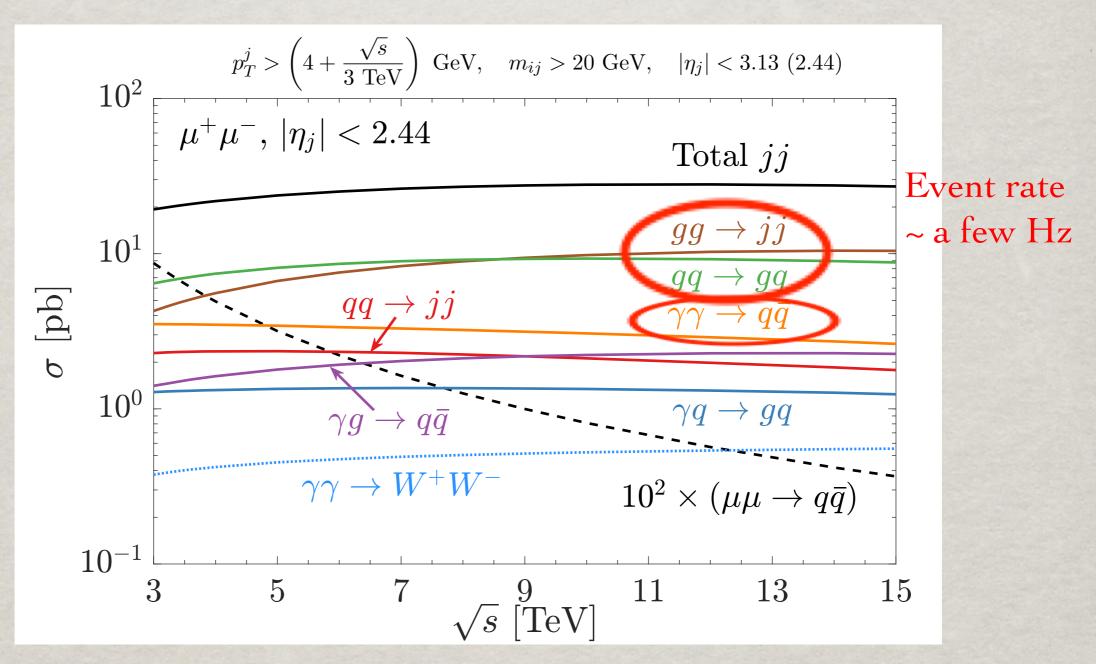
106


105


What will happen when you turn on a $\mu^+\mu^-$ Smasher?

Leading-order \(\mu^+\mu^-\) annihilation:

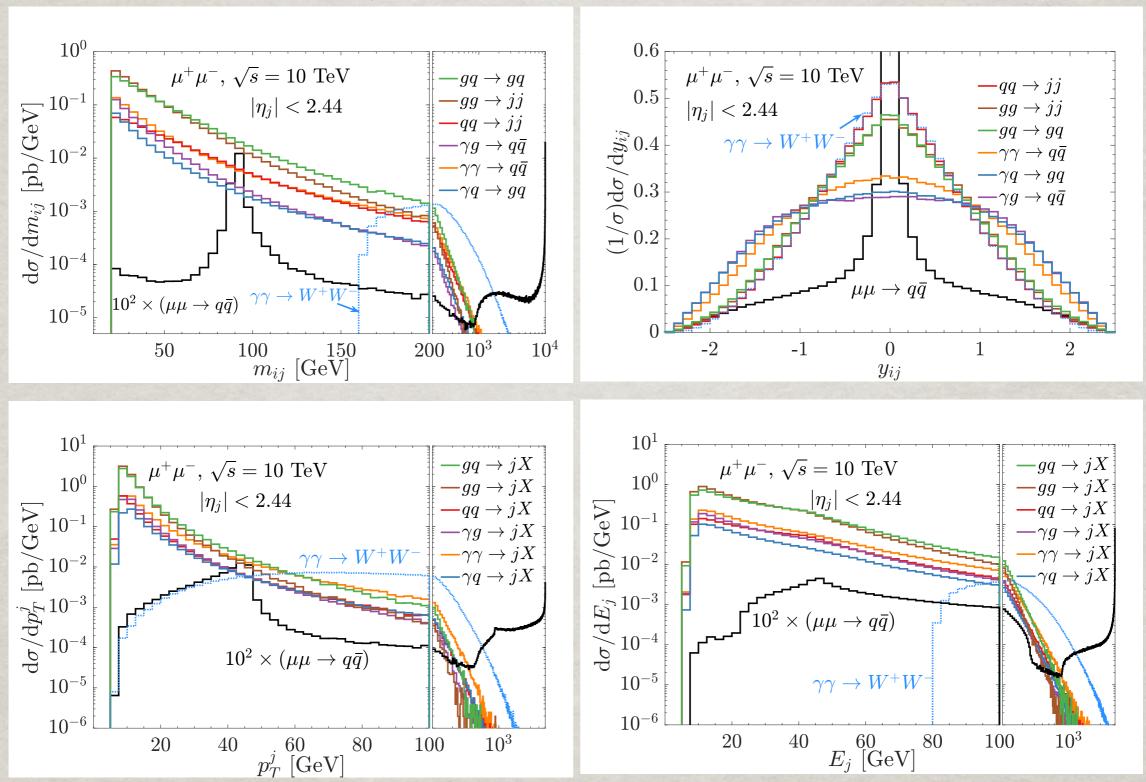
• Photon-induced QED cross sections have larger rates $\sigma_{fusion} \sim \frac{\alpha^2}{m_{jj}^2} \log^2(\frac{Q^2}{m^2})$



$$p_T^j > \left(4 + \frac{\sqrt{s}}{3 \text{ TeV}}\right) \text{ GeV}, \quad m_{ij} > 20 \text{ GeV}, \quad |\eta_j| < 3.13 \ (2.44)$$

Quarks/gluons come into the picture via SM DGLAP:

$$\frac{\mathrm{d}}{\mathrm{d}\log Q^{2}} \begin{pmatrix} f_{L} \\ f_{U} \\ f_{D} \\ f_{\gamma} \\ f_{g} \end{pmatrix} = \begin{pmatrix} P_{\ell\ell} & 0 & 0 & 2N_{\ell}P_{\ell\gamma} & 0 \\ 0 & P_{uu} & 0 & 2N_{u}P_{u\gamma} & 2N_{u}P_{ug} \\ 0 & 0 & P_{dd} & 2N_{d}P_{d\gamma} & 2N_{d}P_{dg} \\ P_{\gamma\ell} & P_{\gamma u} & P_{\gamma d} & P_{\gamma\gamma} & 0 \\ 0 & P_{gu} & P_{gd} & 0 & P_{gg} \end{pmatrix} \otimes \begin{pmatrix} f_{L} \\ f_{U} \\ f_{D} \\ f_{\gamma} \\ f_{g} \end{pmatrix}$$


Di-jet production: $\gamma \gamma \to q \overline{q}, \ \gamma g \to q \overline{q}, \ \gamma q \to g q,$ $qq \to qq(gg), \ gq \to gq, \ and \ gg \to gg(q \overline{q})$

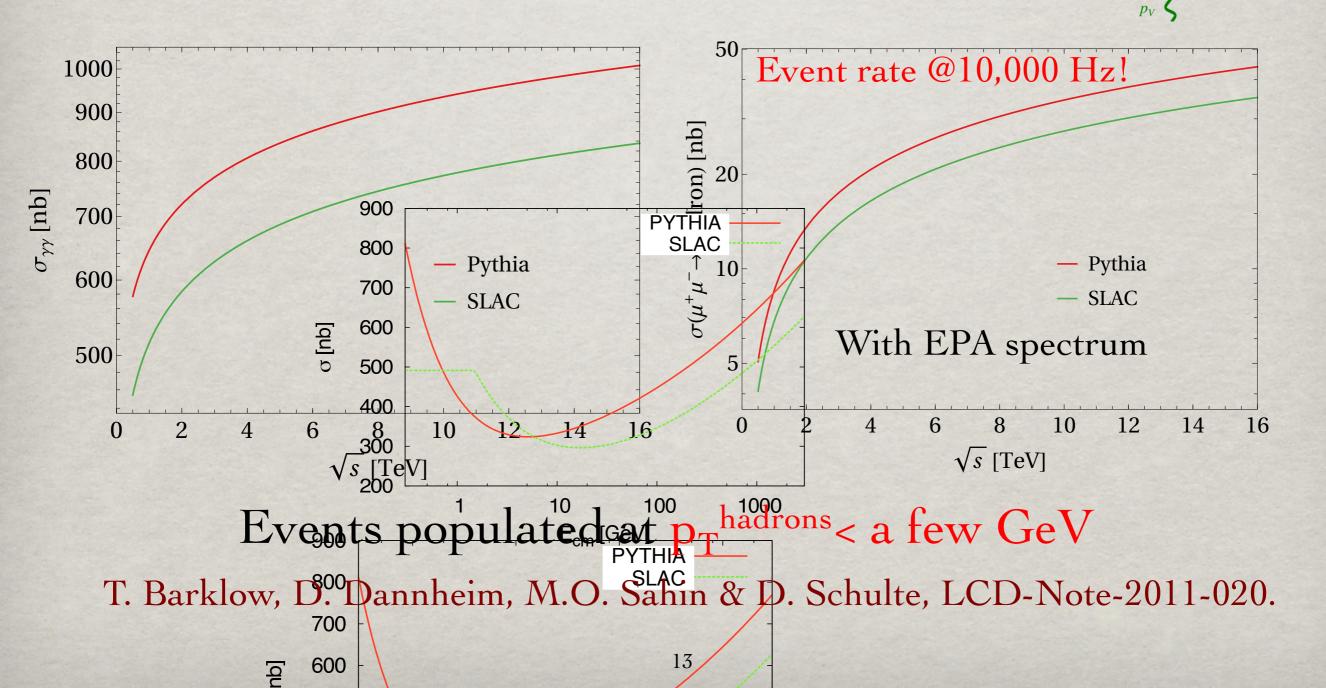
> Jet production dominates at low energies

TH, Yang Ma, Keping Xie, arXiv:2103.09844.

Di-jet kinematical features

To effectively separate the QCD backgrounds:

 $p_T > 60 \text{ GeV}$


Total cross sections: $\gamma\gamma$ and $\mu^+\mu^- \rightarrow \text{hadrons}$

PYTHIA parameterization:

$$\sigma_{\gamma\gamma}(E_{cm}^2) = 211 \text{ nb}(E_{cm}^2 \text{GeV}^{-2})^{0.0808} + 215 \text{ nb}(E_{cm}^2 \text{GeV}^{-2})^{-0.4525}$$

SLAC parameterization:

$$\sigma_{\gamma\gamma}(E_{cm}^2) = 200 \text{ nb}(1 + 0.0063[\ln(E_{cm}^2 \text{GeV}^{-2})]^{2.1} + 1.96(E_{cm}^2 \text{GeV}^{-2})^{-0.37})$$

• EW physics at ultra-high energies:

$$rac{v}{E}: rac{v~(250~{
m GeV})}{10~{
m TeV}} pprox rac{\Lambda_{QCD}~(300~{
m MeV})}{10~{
m GeV}}$$
 $v/E,~m_t/E,~M_W/E
ightarrow 0!$

- A massless theory:
 - > splitting phenomena dominate!
- EW symmetry restored:
 - \rightarrow SU(2)_L x U(1)_Y unbroken gauge theory
- v/E as power corrections
 - → Higher twist effects.

J. Chen, TH, B. Tweedie, arXiv:1611.00788;

G. Cuomo, A. Wulzer, arXiv:1703.08562; 1911.12366.

Ciafaloni et al., hep-ph/0004071; 0007096; A. Manohar et al., 1803.06347. C. Bauer, Ferland, B. Webber et al., arXiv:1703.08562; 1808.08831.

EW splitting functions:

Start from the unbroken phase – all massless.

$$\mathcal{L}_{SU(2) \times U(1)} = \mathcal{L}_{gauge} + \mathcal{L}_{\phi} + \mathcal{L}_{f} + \mathcal{L}_{Yuk}$$

Chiral fermions: f_s , gauge bosons: g_s , g_s , g_s g_s

e.g.: fermion splitting:

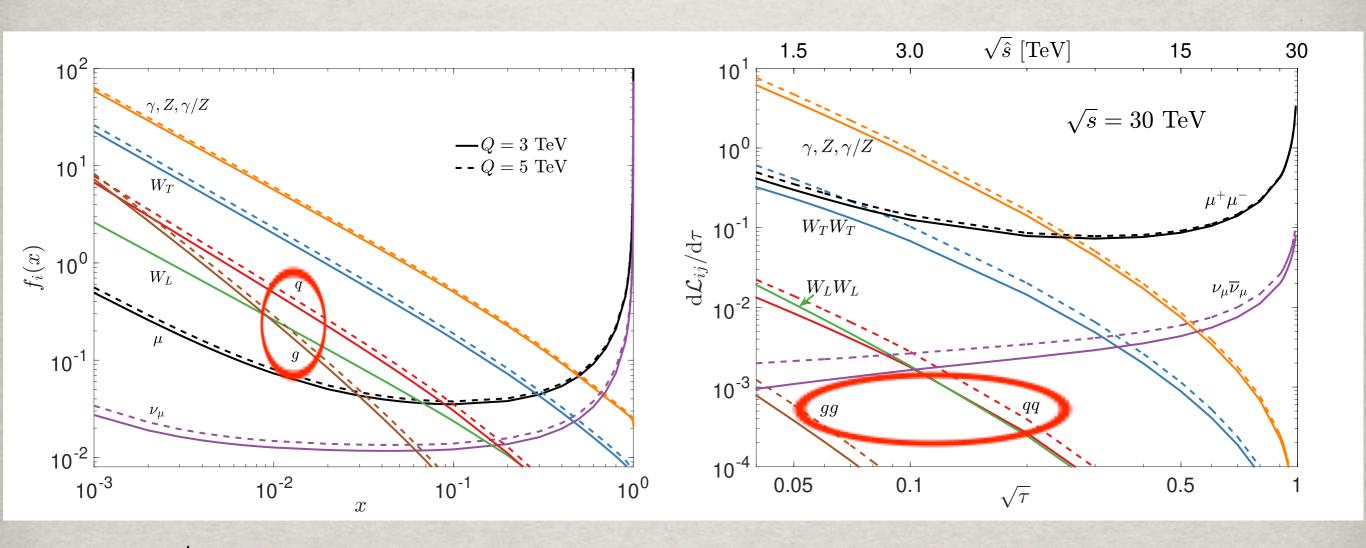
Splitting in a broken gauge theory:

New fermion splitting:
$$\frac{v^2}{k_T^2} \frac{dk_T^2}{k_T^2} \sim (1 - \frac{v^2}{Q^2})$$

V_L is of IR, h no IR

$$\frac{1}{16\pi^2} \frac{v^2}{\tilde{k}_T^4} \left(\frac{1}{z}\right) \qquad \frac{1}{16\pi^2} \frac{v^2}{\tilde{k}_T^4} \qquad \frac{1}{16\pi^2} \frac{v^2}{\tilde{k}_T^4} \qquad \frac{1}{16\pi^2} \frac{v^2}{\tilde{k}_T^4} \qquad V_T f_{-s}^{(\prime)}$$

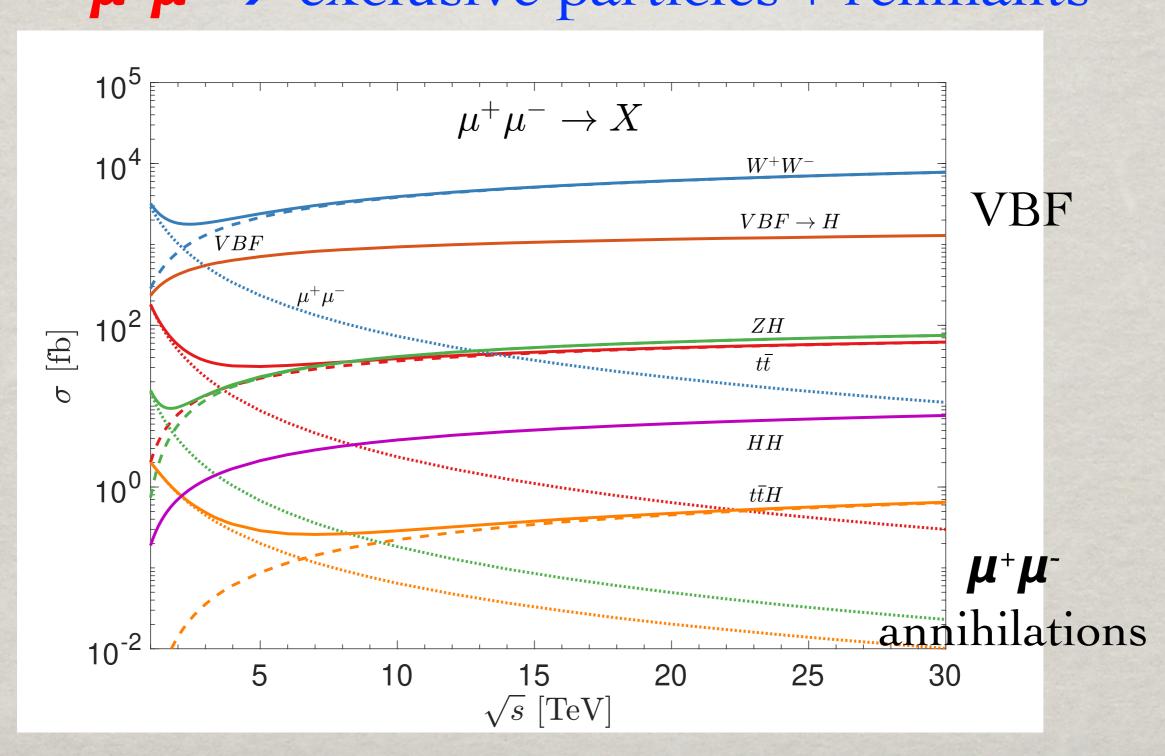
Chirality conserving: Non-zero for massless f

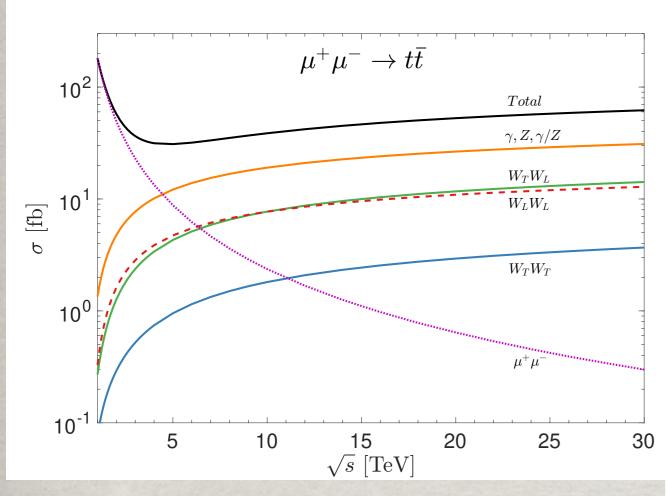

Chirality flipping: ~m_f

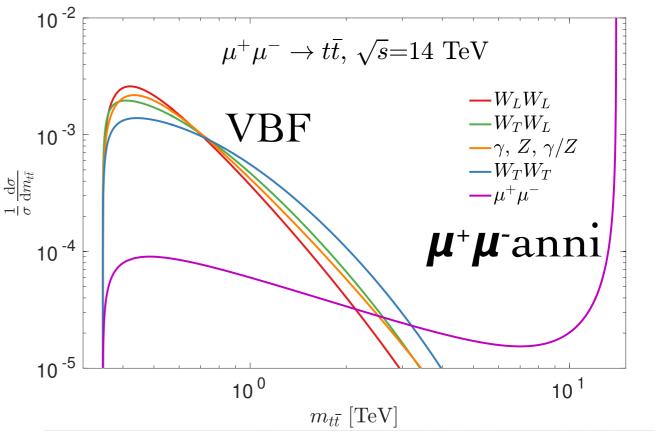
The DPFs for W_L thus don't run at leading log: "Bjorken scaling" restored (higher-twist effects)!

• EW PDFs at a muon collider:

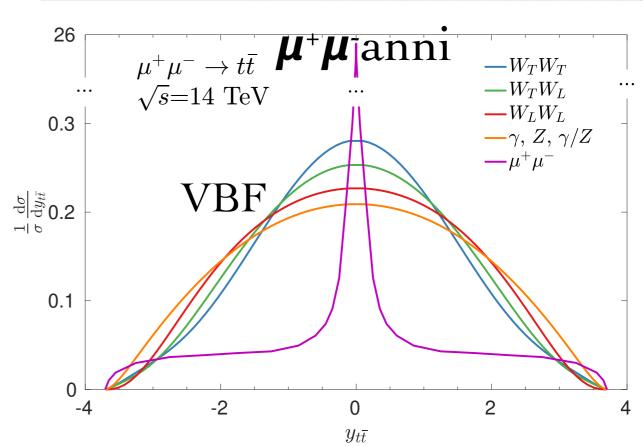
"partons" dynamically generated $\frac{\mathrm{d}f_i}{\mathrm{d} \ln Q^2} = \sum_{I} \frac{\alpha_I}{2\pi} \sum_{j} P_{i,j}^I \otimes f_j$


$$\frac{\mathrm{d}f_i}{\mathrm{d}\ln Q^2} = \sum_{I} \frac{\alpha_I}{2\pi} \sum_{j} P_{i,j}^I \otimes f_j$$


 μ^{\perp} : the valance. ℓ_R , ℓ_L , ν_L and $B, W^{\pm,3}$: LO sea. Quarks: NLO; gluons: NNLO.


TH, Yang Ma, Keping Xie, arXiv:2007.14300

• "Semi-inclusive" processes Just like in hadronic collisions: $\mu^+\mu^- \rightarrow \text{exclusive particles} + \text{remnants}$


Underlying sub-processes:

Partonic contributions

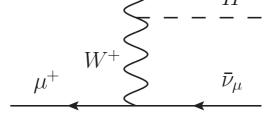
μ+μ Collider:
"Buy one, get one free"
Annihilation + VBF

Unique kinematic features:

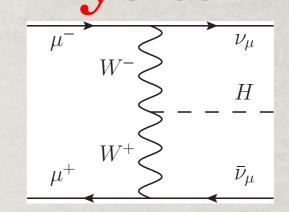
"Recoil mass" \rightarrow "missing mass": $m_{\text{missing}}^2 \equiv (p_{\mu^+} + p_{\mu^-} - \sum p_i^{\text{obs}})^2$ $m_{\text{missing}}^2 \equiv (p_{\mu^+} + p_{\mu^-} - p_{\gamma})^2 > 4m_{\chi}^2$ $m_{\text{missing}}^2 = (p_{\mu^+}^{\text{in}} + p_{\mu^-}^{\text{in}} - p_{\mu^{\pm}}^{\text{out}})^2 > 4m_{\chi}^2 \cdot \bar{\nu}$ <u>€</u> 10⁻¹ 5.0 7.5 m_{missing} [TeV] $m_{\rm missing}$ [TeV] Unavailable in hadronic collisions! Forward tagging: (1/ σ) (d σ /d θ μ) [/1 $^{\circ}$] 0.100 0.001 $\sim 0.02 \approx 1.2^{\circ}$ at 10 TeV. Jägging is costly:

TH, Z. Liu, L.T. Wang, X. Wang: arXiv:2009.11287 TH, D. Liu, I. Low, X. Wang, arXiv:2008.12204

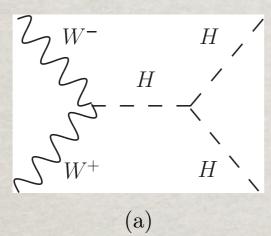
orward detector?

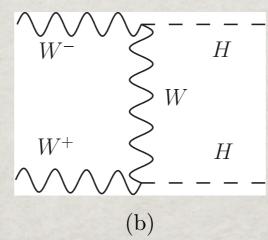

 $10^{-4} \frac{1}{0}$

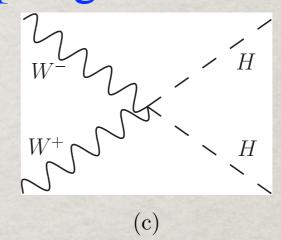
• Precision-Higgs Physics


$$\mu^{+}\mu^{-} \rightarrow \nu_{\mu}\bar{\nu}_{\mu} H$$

$$\mu^{+}\mu^{-} \rightarrow \mu^{+}\mu^{-} H$$


$$\mu^{+}$$



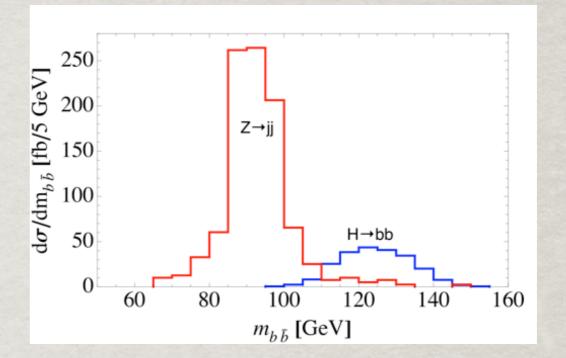

WWH / ZZH couplings

HHH / WWHH couplings:

\sqrt{s} (TeV)	3	6	10	14	30
benchmark lumi (ab ⁻¹)	1	4	10	20	90
σ (fb): $WW \to H$	490	700	830	950	1200
ZZ o H	51	72	89	96	120
$WW \rightarrow HH$	0.80	1.8	3.2	4.3	6.7
ZZ o HH	0.11	0.24	0.43	0.57	0.91
$WW \rightarrow ZH$	9.5	22	33	42	67
$WW \rightarrow t\bar{t}H$	0.012	0.046	0.090	0.14	0.28
WW o Z	2200	3100	3600	4200	5200
WW o ZZ	57	130	200	260	420

10M H

500k HH


TH, D. Liu, I. Low, X. Wang, arXiv:2008.12204

Achievable accuracies

Leading channel H → bb:

$$\Delta E/E = 10\%$$
.

$$10^{\circ} < \theta_{\mu^{\pm}} < 170^{\circ}$$
.

$$\mathcal{L} \supset \left(M_W^2 W_{\mu}^+ W^{-\mu} + \frac{1}{2} M_Z^2 Z_{\mu} Z^{\mu} \right) \left(\kappa_V \frac{2H}{v} + \kappa_{V_2} \frac{H^2}{v^2} \right) - \frac{m_H^2}{2v} \left(\kappa_3 H^3 + \frac{1}{4v} \kappa_4 H^4 \right)$$

\sqrt{s} (lumi.)	$3 \text{ TeV } (1 \text{ ab}^{-1})$	6 (4)	10 (10)	14 (20)	(90)	Compare
$WWH (\Delta \kappa_W)$	0.26%	0.12%	0.073%	0.050	0.023%	0.1% [41]
$\Lambda/\sqrt{c_i}$ (TeV)	4.7	7.0	9.0		16	(68% C.L.)
ZZH $(\Delta \kappa_Z)$	1.4%	0.89%	0.61%	0.46%	0.21%	0.13% [17]
$\Lambda/\sqrt{c_i}$ (TeV)	2.1	2.6	3.2	3.6	5.3	(95% C.L.)
$WWHH (\Delta \kappa_{W_2})$	5.3%	1.3%	0.62%	0 41%	0.20%	5% [36]
$\Lambda/\sqrt{c_i}$ (TeV)	1.1	2.1	3.1	3.8	5.5	(68% C.L.)
HHH $(\Delta \kappa_3)$	25%	10%	5.6%	3.9/	2.0%	5% [22, 23]
$\Lambda/\sqrt{c_i}$ (TeV)	0.49	0.77	1.0	1.2	1.7	(68% C.I

Table 7: Summary table of the expected accuracies at 95% C.L. for the Higgs couplings at a variety of muon collider collider energies and luminosities.

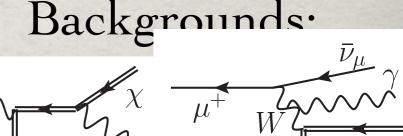
22 TH, D. Liu, I. Low, X. Wang, arXiv:2008.12204

• WIMP Dark Matter (a conservative SUSY scenario)

Consider the "minimal EW dark matter": an EW multi-plet

- The lightest neutral component as DM
- Interactions well defined > pure gauge
- Mass upper limit predicted >> thermal relic abundance

Model		Therm.					
(color, n, Y)		target					
(1,2,1/2) Dirac		1.1 TeV					
(1,3,0)	Majorana	2.8 TeV	Cirelli, Fornengo and Strumia:				
$(1,3,\epsilon)$	Dirac	2.0 TeV	hep-ph/0512090, 0903.3381;				
(1,5,0)	Majorana	14 TeV	TH, Z. Liu, L.T. Wang, X. Wang:				
$(1,5,\epsilon)$	Di_1	•					
(1,7,0)	Figure 5: Thermal relic DM abundance co Aptimating account tree-level scatterings (blue curve), adding Sommerfeld corrections (red curve), and adding bound state formation (ma-						
$(1,7,\epsilon)$	$gen \mathbb{H}_1$ We consider DM as a fermion $SU(2)_L$ triplet (left panel) and as a fermion quintuplet						
	to show that bo	und states hav	the $SU(2)_L$ -invariant approximation is not good, but it's enough we a negligible impact. In the latter case the $SU(2)_L$ -invariant				


approximation is reasonably good, and adding bound states has a sizeable effect.

— Perturbative

1. Mono-photon signal:

A single photon against missing particles

Signal production:

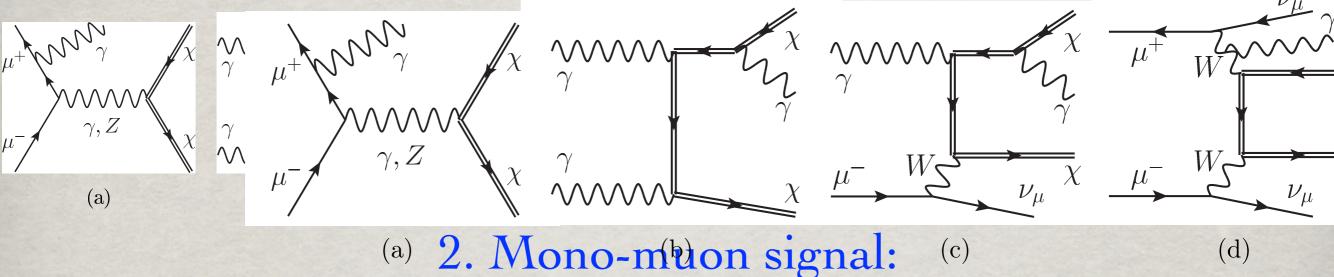
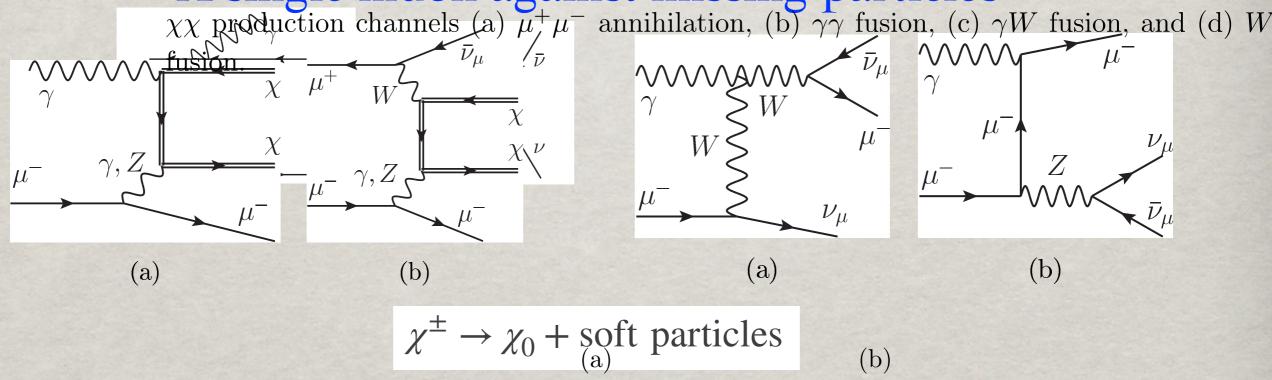
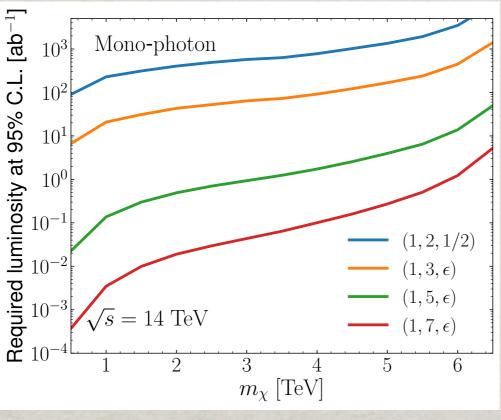
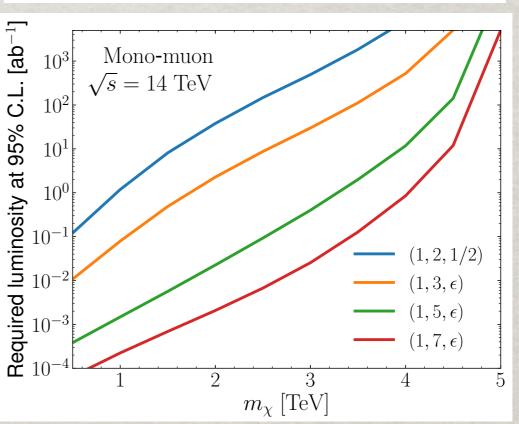



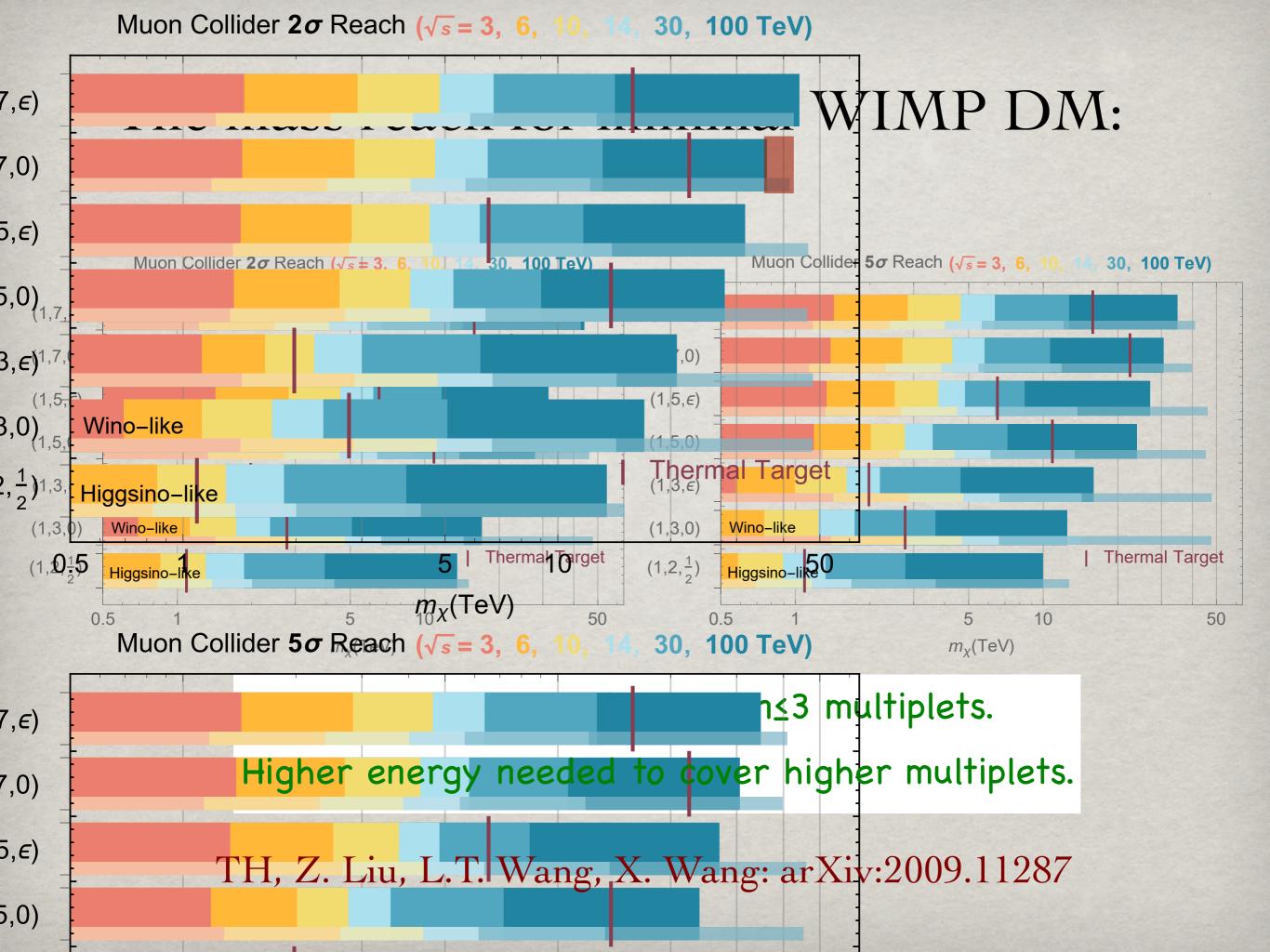
Figure 1 g Representative Egynman diagrams for the mont photon signal from a variety


Trigure 2.1 Representative reguman diagrams for the SM mono-photon background (a) from W-exchange, and (b) from $Z \to \nu \bar{\nu}_4$.



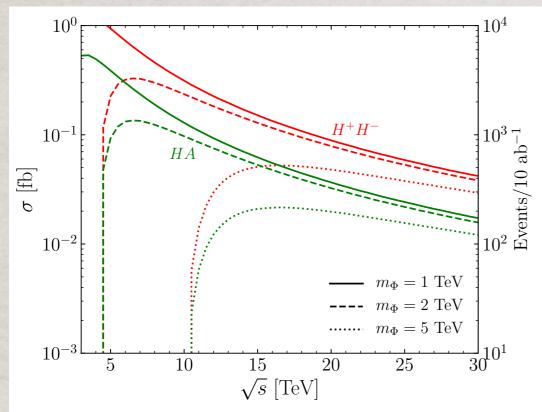
Mono-photon channel:

Mono-muon channel:

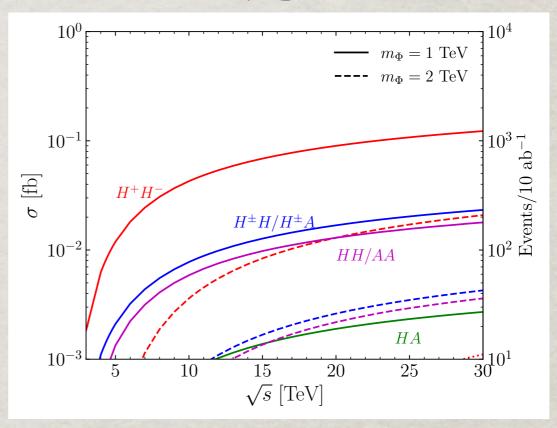

TH, Z. Liu, L.T. Wang, X. Wang: arXiv:2009.11287

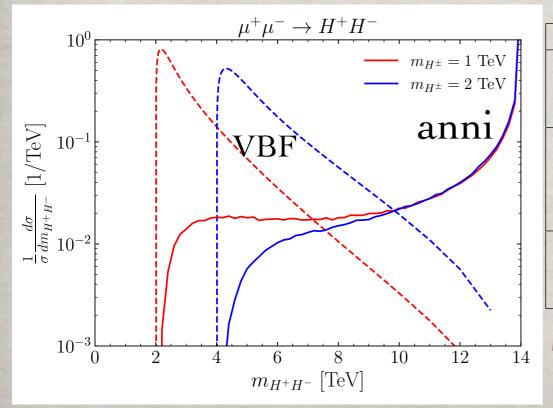
Higher center of mass energy helps to increase the efficiency for a fixed mass by orders of magnitude as we are catching more events on the exponential declaration the boost.

In the following, we will discuss the experimental identification of the disappearing track signals. The disappearing track signals of the minimal dark matter are particularly challenging due to the short lifetimes, especially for Higgsino-like signals, pand the moderate-to-low boost for heavy minimal dark matter particles when their masses are close to the kinematic boundary $m_{\rm dm} \sim \sqrt{s}/2$. Hence, it is critical to push the limit in the detector design to enhance such signals. In particular, the number of tracker layers closefailed to the identification criteria due to crucial. Current disappearing track searches at the LHO requires 3 atom hits [42, 43] in order to effectively suppress the backgrounds. New proposals for high-luminosity LHC and FCC-hh are envisioning two-hit signals while the background is still under control [44]. Hence, we would anticipate the needselfor Mitting the track twice or three times for a disappearing track signal to be identifie $d_T^{\min} = 5$ cm with $|\eta_{\chi}| < 1.5$ ies of the detector performance for muon colliders [45–47] have used a setup in which there are 5 tracker layers from 3 cm to 12.9 cm. To set a performance target needed for the search of the minimal dark matter, and in the


absence of a concrete design, we will adopt $\epsilon_{\chi}(\cos\theta, \gamma, d_T^{\min}) = \exp\left(\frac{-d_T^{\min}}{\beta_T}\right) \sup_{|\eta_{\chi}| < 1.5} |\eta_{\chi}| < 1.5$ (3.25)

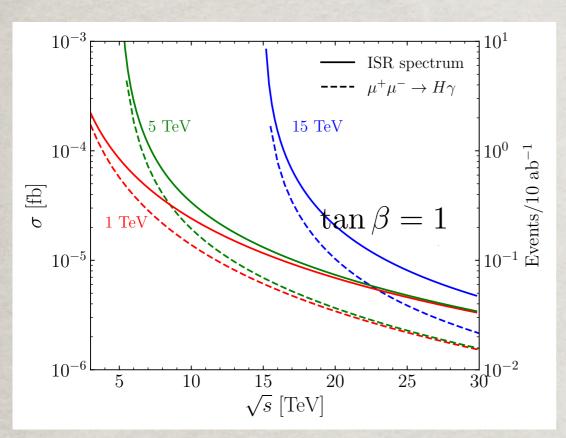
as the minimal transverse distance for a charged partner of the dark matters to the well and then to be identified as a disappearing track (with $\frac{1}{2}$ minimal of 2-3 hits, depending on the detector design). The dependence of the signal efficiency on the d_T is shown in the right panel

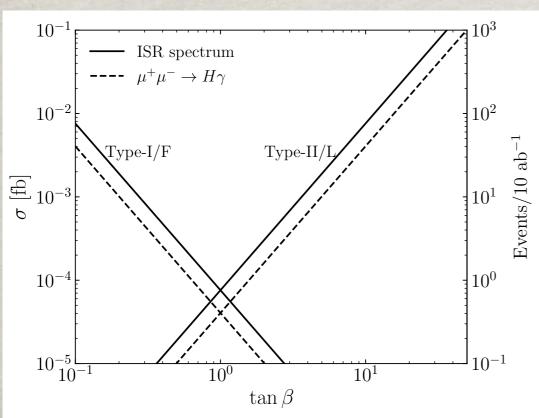


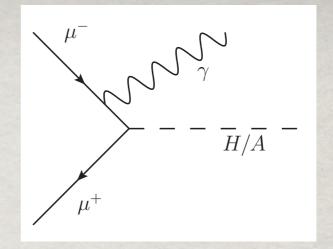

Heavy Higgs Bosons Production

annihilation

VBF






	production	Type-I	Type-II	Type-F	Type-L		
	H^+H^-						
small $\tan \beta < 5$	HA/HH/AA	$tar{t},tar{t}$					
	$H^{\pm}H/A$	$tb, tar{t}$					
	H^+H^-	$tar{b},ar{t}b$			$tb, au u_{ au}$		
1	HA/HH/AA	$t ar{t}, t ar{t}$	$tar{t}, bar{b}$		$t\bar{t}, au^+ au^-$		
intermediate $\tan \beta$	$H^{\pm}H/A$	$\left \begin{array}{c c} tb, tar{t} \end{array} \right \left \begin{array}{c c} tb, tar{t}; tb, bar{b} \end{array} \right $		$tb, t\bar{t}; tb, \tau^+\tau^-;$			
				$\tau \nu_{\tau}, t\bar{t}; \ \tau \nu_{\tau}, \tau^{+}\tau^{-}$			
	H^+H^-	$tar{b},ar{t}b$	$tb, tb(au u_{ au})$	$tar{b},ar{t}b$	$ au^+ u_ au, au^- u_ au$		
large $\tan \beta > 10$	HA/HH/AA	$t ar{t}, t ar{t}$	$b\bar{b}, b\bar{b}(\tau^+\tau^-)$ $b\bar{b}, b\bar{b}$		$ au^+ au^-, au^+ au^-$		
	$H^{\pm}H/A$	$tb, tar{t}$	$tb(\tau\nu_{\tau}), b\bar{b}(\tau^{+}\tau^{-})$	$tb, bar{b}$	$ au^{\pm} u_{ au}, au^{+} au^{-}$		

TH, S. Li, S. Su, W. Su, Y. Wu, arXiv:2102.08386.

Radiative returns:

$$\hat{\sigma}(\mu^{+}\mu^{-} \to H) = \frac{\pi Y_{\mu}^{2}}{4} \delta(\hat{s} - m_{H}^{2}) = \frac{\pi Y_{\mu}^{2}}{4s} \delta(\tau - \frac{m_{H}^{2}}{s})$$

$$f_{\ell/\ell}(x) = \frac{\alpha}{2\pi} \frac{1 + x^{2}}{1 - x} \log \frac{s}{m_{\mu}^{2}}$$

$$\sigma = 2 \int dx_1 f_{\ell/\ell}(x_1) \hat{\sigma}(\tau = x_1) = \frac{\alpha Y_{\mu}^2}{4s} \frac{s + m_H^4/s}{s - m_H^2} \log \frac{s}{m_{\mu}^2}$$

Depending on the coupling, $M_{\rm H} \sim E_{\rm cm}$

TH, S. Li, S. Su, W. Su, Y. Wu, arXiv:2102.08386; TH, Z.Liu et al., arXiv:1408.5912.

Summary

- s-channel Higgs factory:
 - Direct measurements on $Y_{\mu} \& \Gamma_{H}$
 - Other BRs comparable to ete Higgs factories
- Multi-TeV colliders:
 - Unprecedented accuracies for WWH, WWHH, H³, H⁴
 - Bread & butter SM EW physics in the new territory
 - New particle (Q,H...) mass coverage $M_H \sim (0.5 1)E_{cm}$
 - Decisive coverage for minimal WIMP DM M $\sim 0.5~E_{cm}$
 - Complementary to Astro/Cosmo/GW & to FCC-hh:

Physics Reports
Volume 652, 3 October 2016, Pages 1-49

Physics opportunities of a 100 TeV proton–proton collider

Nima Arkani-Hamed ^a, Tao Han ^{b, c}, Michelangelo Mangano ^d, Lian-Tao Wang ^{e,} ^f ○ ☑

Exciting journey ahead!