Muon g-2 and EDM theory motivation

Dominik Stöckinger, TU Dresden

Workshop: Potential Fermilab Muon Campus & Storage Ring Experiments, 24th May 2021

- Overview and SM theory
- 2g-2 and BSM important general remarks
- 3 Comparisons a_{μ} and other dipole observables
- General lessons and conclusions

◆ロ > ← 部 > ← 重 > ・ 重 ・ の Q ○

Dominik Stöckinger 1/12

Finally: Fermilab Run 1 versus Theory Initiative SM value

Limits on EDMs:
$$|d_e|<8.7\times10^{-29}e\,{\rm cm}$$

$$|d_\mu|<1.5\times10^{-19}e\,{\rm cm}$$
 Limit on $\mu\to e\gamma$:
$$BR(\mu\to e\gamma)<4.2\times10^{-13}$$

Dominik Stöckinger Overview and SM theory 2/12

The landscape of dipole observables

$$H_{\mathrm{eff}} = -2(1+a_{\mu})\frac{e}{2m_{\mu}}\vec{B}\cdot\vec{S} - 2d_{\mu}\vec{E}\cdot\vec{S}$$

EDM is T, P, CP-violating!

$$a_{\mu} = -2m_{\mu} \operatorname{Re}(c), \quad d_{\mu} = -e \operatorname{Im}(c), \quad BR_{(\mu \to e\gamma)} \approx \sim |c^{\mu e}|^2$$

$$\sim ar{u}(p') \Big[\gamma_{\mu} F_1 + rac{i}{2m} \sigma_{\mu
u} q^{
u} (\operatorname{Re}(c) - i \gamma_5 \operatorname{Im}(c)) \Big] u(p)$$

- 4 ロ > 4 個 > 4 種 > 4 種 > 種 夕 Q ()

The landscape of dipole observables

$$H_{\mathrm{eff}} = -2(1+a_{\mu})\frac{e}{2m_{\mu}}\vec{B}\cdot\vec{S} - 2d_{\mu}\vec{E}\cdot\vec{S}$$

EDM is T, P, CP-violating!

$$a_{\mu} = -2m_{\mu} \operatorname{Re}(c), \quad d_{\mu} = -e \operatorname{Im}(c), \quad BR_{(\mu \to e\gamma)} \approx \sim |c^{\mu e}|^2$$

$$\sim ar{u}(p') \Big[\gamma_{\mu} F_1 + rac{i}{2m} \sigma_{\mu
u} q^{
u} (\mathrm{Re}(c) - i \gamma_5 \mathrm{Im}(c)) \Big] u(p)$$

Note: $\mu o e$ conversion and e.g. neutron-EDM are not only given by dipole operators but might be "dipole-dominated"

Dominik Stöckinger Overview and SM theory 3/12

Units and first expectations: a_{μ} , d_{μ} and $\mu \rightarrow e \gamma$ are dipole observables

$$a_{\mu} = -2m_{\mu} \operatorname{Re}(c), \quad d_{\mu} = -e \operatorname{Im}(c), \quad BR_{(\mu \to e\gamma)} \approx \sim |c^{\mu e}|^2$$

- ullet suppose $a_{\mu}\sim 10^{-9}$, and also ${
 m Im}(c)/{
 m Re}(c)= an\phi\sim 1$
- expect

Compton wavelength λ

Dominik Stöckinger Overview and SM theory 4/12

SM contributions

• All sectors of the SM contribute to a_{μ} : $a_{\mu}^{\text{QED}} \sim 10^{-3}$ $a_{\mu}^{\text{HVP}} \sim 10^{-3}$

• Electron/muon EDM in SM needs quarks of all generations ($\leadsto \approx 0$)!

[Pospelov, Ritz '13] 4-, 5-loop diagrams $d_e \sim 10^{-44} e \ cm$ (10⁻³⁴ × Compton!)

• Similarly: CLFV essentially zero in SM (even with neutrino masses) $(\mu \to e\gamma, \ \mu \to e$ conversion etc)

Open questions require Beyond the Standard Model (BSM) physics

Open questions!

- experimental clues needed! $\rightsquigarrow g-2!$
- relevant and deep questions may be related to g-2
- Origin of baryon-antibaryon asymmetry?
 → FDMs!

Open questions require Beyond the Standard Model (BSM) physics

Open questions!

- experimental clues needed! $\rightsquigarrow g-2!$ not easy to explain!
- relevant and deep questions may be related to g-2
- Origin of baryon-antibaryon asymmetry?
 FDMs!

Two important general points on a_{μ}

SM prediction too low by
$$\approx (25 \pm 6) \times 10^{-10}$$

$$\begin{array}{c} \text{discrepancy} \approx 2 \times \textit{a}_{\mu}^{\text{SM,weak}} \\ \text{but: expect } \textit{a}_{\mu}^{\text{NP}} \sim \textit{a}_{\mu}^{\text{SM,weak}} \times \left(\frac{\textit{M}_{W}}{\textit{M}_{\text{NP}}}\right)^{2} \times \text{couplings} \end{array}$$

 Many experiments needed to investigate CPV and flavor structure of potential new physics

Two important general points on a_{μ}

SM prediction too low by
$$\approx (25\pm 6)\times 10^{-10}$$

$$\begin{array}{c} {\rm discrepancy} \approx 2 \times \textit{a}_{\mu}^{\rm SM, weak} \\ {\rm but: \ expect \ } \textit{a}_{\mu}^{\rm NP} \sim \textit{a}_{\mu}^{\rm SM, weak} \times \left(\frac{\textit{M}_{W}}{\textit{M}_{\rm NP}}\right)^{2} \times \text{couplings} \end{array}$$

 Many experiments needed to investigate CPV and flavor structure of potential new physics

Window to muon mass generation mechanism?

Dark Matter? Hard to see in detectors

but could couple to muon → large effects possible!

many examples, but within simple models; need at least three new fields

generally: dark matter direct detection constraints important!

Window to muon mass generation mechanism? allows significant chiral enhancements,

but such models are constrained by collider, flavour etc

Dark Matter? Hard to see in detectors

but could couple to muon \leadsto large effects possible!

many examples, but within simple models: need at least three new fields

 $generally: \ dark \ matter \ direct \ detection \ constraints \ important!$

Window to the muon mass generation mechanism (Higgs/Yukawa sectors)

(continuous spin rotation requires rest mass!)

Window to muon mass generation mechanism? allows significant chiral enhancements.

but such models are constrained by collider, flavour etc

Dark Matter? Hard to see in detectors

but could couple to muon → large effects possible!

many examples, but within simple models: need at least three new fields

generally: dark matter direct detection constraints important!

Window to the muon mass generation mechanism (Higgs/Yukawa sectors)

(continuous spin rotation requires rest mass!)

(changed by new physics?)

Connection to chirality flip, and structure of BSM

But:

EW gauge invariant a_{μ} -operator:

$$\bar{L}\sigma_{\mu\nu}\mu_R F^{\mu\nu}\langle H \rangle$$

$$a_{\mu} \sim m_{\mu} \times \underbrace{(\text{some VEV}) \times (\mu_{L \leftrightarrow R}\text{-flipping param.})}_{\text{potential enhancement! Often } \propto m_{\mu}} \times \underbrace{(\text{other couplings})}_{\text{typical}} \times \frac{(\text{other couplings})}{M_{\text{typical}}^2}$$

 $m_{\mu}(SM) \sim (SM \text{ Higgs-VEV}) \times (\text{muon Yukawa coupling})$

Typical behaviour: \sim chirality flip (\rightsquigarrow Higgs!) and masses

• EWSM:
$$\alpha \frac{m_{\mu}^2}{M_W^2}$$

$$\begin{array}{c|c} \times \langle H \rangle & \nu_L \\ \hline \mu_R & \mu_L & W & \mu_L \end{array}$$

• LQ:

$$g_Lg_R \frac{m_\mu m_t}{M_{LQ}^2}$$

• 2HDM:

$$lpha^2 an^2 eta rac{m_\mu^2}{M_H^2}$$

• SUSY:

$$\alpha \frac{m_{\mu}^2 \tan \beta}{M_{\text{SUSY}}^2} \frac{\mu}{M_{\text{SUSY}}}$$

Details: see backup slides [Athron,Balazs,Jacob,Kotlarski, DS,Stöckinger-Kim, 2104.03691]

Typical behaviour: \sim chirality flip (\rightsquigarrow Higgs!) and masses

• EWSM: $\alpha \frac{m_{\mu}^2}{M_W^2}$

• LQ: $g_Lg_R \frac{m_\mu m_t}{M_{LQ}^2}$

Couplings \sim new flavor structure, formally $\propto m_{tt} m_t$

• 2HDM: $\alpha^2 \tan^2 \beta \frac{m_{\mu}^2}{M_H^2}$

Couplings \sim new flavor structure or "minimal flavor violating"

New flavor-independent and new flavor-dependent contributions

Details: see backup slides [Athron,Balazs,Jacob,Kotlarski, DS,Stöckinger-Kim, 2104.03691]

SUSY:

Relations and estimates

also: [Giudice, Paradisi, Passera 2012] [Crivellin, Hoferichter, Schmidt-Wellenburg 2018]

Can unify description of MDM, EDM, CLFV: generalize $\mathcal{L}_{\text{eff}} \sim c^{ij}$ to leptons i, j with coefficients c^{ij} , $c^{ij} \propto \text{VEV} \times \text{chir.-flip}$:

$$egin{aligned} a_{\mu} &= -2m_{\mu} \mathrm{Re}(c^{\mu\mu}) \ a_{\ell} &= -2m_{\ell} \mathrm{Re}(c^{\ell\ell}) \ d_{\ell} &= -e \, \mathrm{Im}(c^{\ell\ell}) \end{aligned}$$
 $BR(\mu
ightarrow e \gamma) = rac{e^2 m_{\mu}^3}{\pi \Gamma_{\mu}} (|c^{\mu e}|^2 + |c^{e\mu}|^2)$

Relations and estimates

also: [Giudice, Paradisi, Passera 2012]
[Crivellin, Hoferichter, Schmidt-Wellenburg 2018]

Can unify description of MDM, EDM, CLFV: generalize $\mathcal{L}_{\text{eff}} \sim c^{ij}$ to leptons i, j with coefficients c^{ij} , $c^{ij} \propto \text{VEV} \times \text{chir.-flip}$:

$$\begin{split} d_{\mu} &\approx \left(\frac{\Delta a_{\mu}}{3\times 10^{-9}}\right) 2\times 10^{-22} \mathrm{e\,cm} \times \tan\phi_{\mu},\\ d_{e} &\approx \left(\frac{\Delta a_{e}}{7\times 10^{-14}}\right) 10^{-24} \mathrm{e\,cm} \times \tan\phi_{e},\\ BR(\mu \to e\gamma) &\approx \left(\frac{\Delta a_{\mu}}{3\times 10^{-9}}\right)^{2} 2\times 10^{-13} \left(\frac{\theta_{\mu e}}{10^{-5}}\right)^{2}, \end{split}$$

Relations and estimates

also: [Giudice, Paradisi, Passera 2012] [Crivellin, Hoferichter, Schmidt-Wellenburg 2018]

Can unify description of MDM, EDM, CLFV: generalize $\mathcal{L}_{\text{eff}} \sim c^{ij}$ to leptons i, j with coefficients c^{ij} , $c^{ij} \propto VEV \times chir.-flip$:

$$\begin{split} d_{\mu} &\approx \left(\frac{\Delta a_{\mu}}{3\times 10^{-9}}\right) 2\times 10^{-22} \text{e cm} \times \tan\phi_{\mu},\\ d_{e} &\approx \left(\frac{\Delta a_{e}}{7\times 10^{-14}}\right) 10^{-24} \text{e cm} \times \tan\phi_{e},\\ BR(\mu \to e\gamma) &\approx \left(\frac{\Delta a_{\mu}}{3\times 10^{-9}}\right)^{2} 2\times 10^{-13} \left(\frac{\theta_{\mu e}}{10^{-5}}\right)^{2}, \end{split}$$

- SM: $\tan \phi \ll 1$, $\theta_{\mu e} \ll 1$.
- Current EDM, MEG limits: $\tan \phi_{\mu} \lesssim 1000$, $(\tan \phi_{e} \ll 1 \text{ or } \Delta a_{e} \ll 10^{-14})$, $\theta_{\mu e} \lesssim 10^{-5}$
- New physics strongly restricted in $\theta_{\mu e}$ and $\tan \phi_e$ but not in $\tan \phi_{\mu} \rightsquigarrow \text{improve}!$
- Naive scaling $c^{\ell\ell} = m_{\ell} \times \text{const.}$:

$$\Delta a_e:\Delta a_\mu=m_e^2:m_\mu^2,\quad d_e:d_\mu=m_e:m_\mu\ \stackrel{\mathsf{Exp.}}{\Rightarrow}\ |d_\mu^\mathsf{naive\ sc.}|\lesssim 10^{-27}$$

- New physics possibilities: new flavor structures (LQ, sleptons, 2HDM-Yukawas), new flavor-independent parameters (complex Higgsino mass, gaugino masses)
- Note: neutron EDM and $\mu \rightarrow e$ conversion sensitive to non-dipole operators! Note 2: naive scaling is different from writing $a_{\mu} = C_{\text{BSM}} \frac{m_{\mu}^{c}}{M^{2}}$ \leftrightarrow $c^{\mu\mu}_{\text{A}} \sim m_{\mu} \times c^{\text{dimensionless BSM-couplings}}_{\text{BSM}} = 0$

Summary of main points

discrepancy
$$\approx 2 \times a_{\mu}^{\rm SM,weak}$$
 but: expect $a_{\mu}^{\rm NP} \sim a_{\mu}^{\rm SM,weak} \times \left(\frac{M_W}{M_{\rm NP}}\right)^2 \times {\rm couplings}$ a_{μ} is loop-induced, CP- and flavor-conserving and chirality-flipping

Which models can still accommodate large deviation?

Many (but not all) models!
→ Connection to dark matter? Window to muon mass generation?

but always: experimental constraints!

Questions for a_{μ} versus d_{μ} (and a_{e} and $\mu \rightarrow e(\gamma)$):

- Is there new physics in a_{μ} ? Dark matter/new Yukawas/Higgs?
- Is there more flavor structure beyond SM Yukawas? (LQ, SUSY, 2HDM, ...)
- Is CPV connected to flavor/generations? (SUSY Higgsino/gaugino masses vs new Yukawas)
- Are there $\mathcal{O}(1)$ sources of CPV (in the muon sector)? $d_{\mu}^{\Delta a_{\mu},\mathcal{O}(1)} \sim 10^{-22} \, \mathrm{e\,cm}$
- ullet Does naive scaling hold (exactly/approximately) for a_ℓ or for d_ℓ ? $d_\mu^{
 m naive\ sc.}\lesssim 10^{-27}{
 m e\,cm}$

Looking forward to experimental programme. very promising future! $_{\sim \infty}$

There are many more examples. . .

SUSY: MSSM, MRSSM

- MSugra...many other generic scenarios
- Bino-dark matter+some coannihil.+mass splittings
- Wino-LSP+specific mass patterns

Two-Higgs doublet model

• Type I, II, Y, Type X(lepton-specific), flavour-aligned

Lepto-quarks, vector-like leptons

ullet scenarios with muon-specific couplings to μ_L and μ_R

- Mostly excluded
- light N.P. (ALPs, Dark Photon, Light $L_{\mu}-L_{\tau}$)

Dominik Stöckinger Backup 13/12

Example BSM idea

- fundamental new QFT symmetry
- predicts Higgs potential/mass
- dark matter candidate
- ullet chirality flip enhancement $\leadsto g-2$
- viable (LHC)?

Dominik Stöckinger Backup 14/12

Example BSM idea Minimal SUSY Standard Model

- fundamental new QFT symmetry
- predicts Higgs potential/mass
- dark matter candidate
- chirality flip enhancement $\rightsquigarrow g-2$
- viable (LHC)?

Superpartners and SUSY Higgs sector $\leadsto an \beta = rac{v_u}{v_d},$ Higgsino mass μ

Dominik Stöckinger Backup 14/12

MSSM can explain g-2 and dark matter

$$a_{\mu}^{
m SUSY} pprox 25 imes 10^{-10} \; rac{ aneta}{50} \; rac{\mu}{M_{
m SUSY}} \left(rac{500 {
m GeV}}{M_{
m SUSY}}
ight)^2$$

- "Dark matter mass" versus μ
- explains g-2 in large region (expands for $\tan \beta \neq 40$)
- DM explained by stau/slepton-coannihilation
- this automatically evades (current) LHC limits

MSSM can explain g-2 and dark matter

$$a_{\mu}^{
m SUSY} pprox 25 imes 10^{-10} \; rac{ aneta}{50} \; rac{\mu}{M_{
m SUSY}} \left(rac{500 {
m GeV}}{M_{
m SUSY}}
ight)^2$$

- Strong LHC limits on M₂
- DM also explained by Wino-coannihilation
- again evades (current) LHC limits

Leptoquarks and Model L with 2 fields $_{0.5}$ $_{-0.1}$ $_{-0.1}$

[Athron, Balazs, Jacob, Kotlarski, DS, Stöckinger-Kim, 2104.03691]

Dominik Stöckinger Backup 17/12

Leptoquarks and Model L with 2 fields

[Athron, Balazs, Jacob, Kotlarski, DS, Stöckinger-Kim, 2104.03691]

$$a_{\mu}$$
 from LQ (or VLL) $\mathcal{L}_{S_1} = -\left(\lambda_{QL}Q_3 \cdot L_2S_1 + \lambda_{t\mu}t\mu S_1^*\right)$

Specific LQ that works:

- Chiral enhancement $\sim y_{\mathsf{top}}, y_{\mathsf{VLL}}$ versus y_{μ}
- LHC: lower mass limits
- Flavour constraints →
 assume only couplings to muons
- Viable window above LHC (without m_{μ} -finetuning)

Leptoquarks and Model L with 2 fields

[Athron, Balazs, Jacob, Kotlarski, DS, Stöckinger-Kim, 2104.03691]

au from 2-field model L

- No chiral enhancement, need very large couplings
- LHC: lower mass limits
- Dark matter candidate, but incompatible with large a_{μ} General result: a_{μ} and DM require at least three new fields!

Dominik Stöckinger Backup

BSM with smaller masses, hidden from colliders?

Aligned 2-Higgs doublet model, rich new Higgs/Yukawa sectors

LHC constraints:

[2104.03691]

- can explain g-2
- need large new Yukawa couplings
- under pressure, testable at LHC, lepton colliders, B-physics

Dominik Stöckinger Backup

Two important general points

$$\begin{array}{c} {\rm discrepancy} \approx 2 \times \textit{a}_{\mu}^{\rm SM, weak} \\ {\rm but: \ expect \ } \textit{a}_{\mu}^{\rm NP} \sim \textit{a}_{\mu}^{\rm SM, weak} \times \left(\frac{\textit{M}_{W}}{\textit{M}_{\rm NP}}\right)^{2} \times {\rm couplings} \end{array}$$

Questions: Which models can(not) explain it?

Why is a single number so interesting?

"Why are you happy about a discrepancy?"

 \Rightarrow we might make significant progress!

Full MSSM overview in 7 plots

[Peter Athron, Csaba Balasz, Douglas Jacob, Wojciech Kotlarski, DS, Hyejung Stöckinger-Kim, 2104.03691]

Full MSSM overview in 7 plots

[Peter Athron, Csaba Balasz, Douglas Jacob, Wojciech Kotlarski, DS, Hyejung Stöckinger-Kim, 2104.03691]

Summary: Bino-LSP: a_{μ} and DM. Wino-/Higgsino-LSP: a_{μ} . Both cha<slepton: pproxdisfavoured.

One-field, two-field models (renormalizable, spin 0, 1/2)

- many models: excluded
- very special models: chiral enhancement specific leptoquarks, specific 2HDM versions
- however, no dark matter

- even more models: excluded
- no chirality flip
- few models: either a^{BNL}_{II} or dark matter

Three-field models

- many models: viable, large chirality enhancements
- \bullet can explain ${\it a}_{\mu}^{\rm BNL}$ and LHC and dark matter

Details on hadronic vacuum polarization

Status of Hadronic Vacuum Polarisation contributions

Lattice QCD + QED

- impressive progress, but...
- large spread between results
- tensions when looking at 'Euclidean
- time window' comparisons
- · large systematic uncertainties (e.g. from non-trivial extrapolation to continuum limit, finite size)

Dispersive/lattice hybrid

('window' method)

For WP20: Dispersive data-driven from DHMZ and KNT

TI White Paper 2020 value:

$$a_{\mu}^{HVP} = 6845 (40) \times 10^{-11}$$

- TI WP2020 prediction uses dispersive data-driven evaluations with minimal model dependence
- a,,HVP value and error obtained by merging procedure accounts for tensions in input data and differences in data treatment & combination (going beyond usual χ^2_{min} inflation) Thomas Teubner

