Estimating Target Performance for Negative Muon Production

24-May-2021

Eremey Valetov SJTU, TDLI, and MSU (Work supported by NSFC and DOE.)

Potential Fermilab Muon Campus & Storage Ring Experiments

Section 1

Introduction

Introduction

- We compared **pion**, **muon**, and **positron/electron** production in the Muon Campus **target station APO**
- **Simulations** were done using **G4beamline 3.06** with variance reduction and using **MARS15(2019)**
 - The QGSP_BERT_HP physics list was used in G4beamline
- The **pion beam** was at **8 GeV**, and the lower energy cutoff was 2.75 GeV (based on minimum pion energy for production of muons at 0.98 · 3.094 GeV/c)
- The comparison was done for
 - **positive particles** in the **positive muon mode**
 - **negative particles** in the **negative muon mode**

Introduction

- The comparison was done for
 - **all new particles** up to **1.2 m DS of the target** (122 mm DS of the collimator) with PMAG not included in the simulation
 - **particles** recorded **at 447.5 mm DS of the target** (123.5 mm US of the collimator, i.e., between the lithium lens and the collimator)
 - particles recorded at the US end of the first quadrupole Q801 in the M2 beamline

Muon Campus beamlines

Target station models Up to quadrupole Q801 in the M2 beamline

G4beamline

Particle production in the target station

Most pions (and muons) are created in the target, with another peak in the Li lens [GM2-doc-19979]

Optimal PMAG field magnitude

Maximize transmission to the US end of Q801 (first quadrupole in M2): MARS: $B_{opt} = 0.55$ T G4beamline: $B_{opt} = 0.54$ T

Maximize transmission to the US end of CMAG (at the end of M3): G4beamline: $B_{opt} = 0.53 \text{ T}$

(A new PMAG optimization study is near completion.)

Section 2

Particle production results using G4beamline 3.06

G4beamline: All pions produced in the target station up to 1.2 m DS from the target

 π^+ and π^-

 π^+ to π^- ratio

G4beamline has a known discrepancy in production of e^+ , with a factor of 4.18 compared to MARS [GM2-doc-23822].

G4beamline: Pions recorded in the target station 447.5 mm downstream from the target

 π^+ and π^-

 π^+ to π^- ratio

G4beamline has a known discrepancy in production of e^+ , with a factor of 4.18 compared to MARS [GM2-doc-23822].

G4beamline: Pions recorded in the M2 beamline at the US end of Q801 quadrupole

 π^+ and π^-

 π^+ to π^- ratio

G4beamline has a known discrepancy in production of e^+ , with a factor of 4.18 compared to MARS [GM2-doc-23822].

Section 3

Particle production results using MARS15(2019)

MARS: All pions produced in the target station up to 1.2 m DS from the target

MARS: All muons produced in the target station up to 1.2 m DS from the target

MARS: All e^+/e^- produced in the target station up to 1.2 m DS from the target

Most e^+/e^- are produced in pairs in EMS induced by photons from π^0 decay.

MARS: Pions recorded in the M2 beamline at the US end of Q801 quadrupole

MARS: Muons recorded in the M2 beamline at the US end of Q801 quadrupole

MARS: e^+/e^- recorded in the M2 beamline at the US end of Q801 quadrupole

Future Studies

- Study the reason for the discrepancy between
 G4beamline and MARS particle production results
 - Implement variance reduction for FTFP_BERT_HP (new "starting point") physics list in G4beamline; try using it instead of QGSP_BERT_HP
- Perform and compare full simulations of the Muon Campus beamlines for positive and negative muon running
- Analytically compare the relevant cross sections directly from a database for positive and negative muon running