ADVANTAGE OF A DEUTERON EDM EXPERIMENT (A THEORIST POV)

Jordy de Vries University of Amsterdam & Nikhef

Preliminairies

- EDMs are low-energy observables: not sensitive to high-energy details
- Effective description is useful to understand e.g. deuteron v neutron v proton EDM
- In Standard Model, only relevant source right now is QCD theta term
- Beyond-the-SM models can induce extra operators at dimension-six

What would a deuteron experiment add to the neutron EDM program?

The CP-odd nuclear force

- CP-violation at quark-gluon level leads to hadronic CP-odd operators
- Largest couplings in principle are pion-nucleon CP-odd interactions

Loop suppression!

Loops are divergent: neutron/proton EDM not just function of pion-nucleon couplings.
Lattice QCD needed for reliable calculations.

The deuteron EDM

$$d_D = 0.9(d_n + d_p) + \left[(0.18 \pm 0.02) \,\overline{g}_1 + (0.0028 \pm 0.0003) \,\overline{g}_0 \,\right] e \, fm$$

- EDMs of light nuclei can be calculated accurately (chiral EFT)
- No Schiff Screening (such as for Hg or Ra diamagnetic atoms)
- Larger light nuclei (e.g. 3He) more difficult due to CP-odd nucleon-nucleon forces in ISO-3PO

Unraveling the CPV source

• Deuteron EDM very sensitive to isospin-breaking CPV sources!

	Theta term	Quark CEDMs	Four-quark operator	Quark EDM and Weinberg
$\left \frac{d_D - d_n - d_p}{d_n} \right $	0.5±0.2	5±3	20±10	≅0

Very complementary to nucleon EDM program !