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After further considerations, there are significant technical challenges with trying to use the Muon g-2 Storage Ring for an electric dipole 
moment (EDM) measurement:
• A deuteron EDM measurement at 10!"# e−cm, equivalent to 10!"$ e−cm for the neutron and 10!"% e−cm for the electron, is still an 

order of magnitude less sensitive than the current electron EDM limit. A hybrid-symmetric (HS) ring measurement would not suffer from 
this issue.

• The vertical E-field issue presents the main systematic error challenge that would need to be understood by developing a rather 
sophisticated Fabry-Perot E-field monitoring system, for the region between the E-field plates located at about 15 m apart. This system is 
expected to add to the cost and time that is needed to ensure the viability of the method. The storage is simultaneous and does not need to 
be tested ahead of time in the HS ring design.

• The geometrical phases are a major source of systematic errors, and the best chance of combating them is to have the horizontal spin 
precession cancelled locally and not just on average, see Yuri Orlov, EDM note ⋕ 26, Dec. 5th , 2002 (attached). Using the Muon g-2 Storage 
Ring with 80% azimuthal coverage of the ring by E-field plates leads to an inevitable enhancement by a few orders of magnitude of the 
geometrical phase systematic error. This feature probably means that we are going to be limited by this geometry and we are not going to 
learn much more, i.e., stability of vertical E-field direction, etc. The HS ring method does not suffer from this issue by design.

• The deuterons need to be read out by an efficient polarimeter. At 0.5 ⁄GeV 𝑐 there is no known efficient polarimeter, and one would need 
to be developed for the needs of the experiment. This process will be time consuming and expensive to achieve. A HS ring can store magic 
momentum protons with an appropriate existing polarimeter design.

• The velocity of the deuteron beam means that the Coulomb scattering rate and the inter beam scattering (IBS) lifetime require very high 
vacuum, which will be quite expensive to achieve and maintain and will limit the stored beam intensity and EDM sensitivity. The proton 
velocity in the HS ring method is 𝛽 = 0.6, and the vacuum requirements and IBS parameters have been studied and considered.

• The transition from the E-field region to no E-field region requires the modification of the pole-pieces in the no E-field region, shaving off 
about 10% from each pole piece. An appropriate modification of the pole-pieces is expected to be quite expensive. No such issue exists in
the HS ring design.
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IN THE EDM EXPERIMENT, THE RADIAL ELECTRIC FIELD 

MUST COMPENSATE THE VERTICAL MAGNETIC FIELD 

LOCALLY, NOT ON THE AVERAGE 

Yuri F. Orlov, Cornell University 

5 Dec. 2002 

In this EDM Note, I will show that the condition of zero 8-2 precession 

(the cancellation condition) must be satisfied locally, at every azimuth 8 = 2m / L , and not 

simply on the average over the whole ring. (L is the length of the ring.) That means that the 

canceling electric field E, must be present at every point where the dipole magnetic field 

Bv is present. More precisely, the designed a, -value (1) must not vary as a function of the 

azimuth along the equilibrium orbit of muons. I will call such variations, when they are 

present, the oscillations of a,, because in the muon rest fi-ame they are perceived as 

oscillations in time. In a lattice design with only the average cancellation, periodic rotations 

of the 8-2 by the magnetic field Bv are periodically canceled by the inverse rotations of the 

8-2 by the electric field E,, with some period L/k, or T/k. in time; T is the revolution 

period, and k is an integer depending on how we have designed the lattice. Such 03, 

oscillations around its zero value are not dangerous by themselves. The problem is that 

there always exist different field perturbations, some of them having the same longitudinal 

period, T/k , as a,. These perturbations can also not be dangerous by themselves, but 

acting in resonance with the a, oscillations they can produce a significant g-2 rotation in 

the vertical plane. That, of course, is deadly dangerous for EDM. I have investigated the 

resonance between the oscillations of the longitudinal magnetic field, BL = BL(s) = BL(vt), 

and the a, oscillations. Below is a brief description of my results. 



Let the lattice have k identical substructures, and inside every substructure (having 

the length L/k, or, in the time variable, T k  ), the designed fields change as follows: 
B,, O<s<l 

0, l < s < L l k - l  
B(s) = 

0, O<s<l 
E,, l < s < L l k - l  E( s) = 

with the cancellation condition 

(3) 

(4) 

Then o, oscillates with the frequency 2nkl L in space, that means, with the frequency 

f=2nkl T in time, and with the amplitude 60, , 
2 L l k  eB, nkl 

So, = - a-sin-. n (Llk-I) me L 

Note that by virtue of the condition (4), So, f 0 when I + 0 or 1 + L/ k. The case 

without oscillations corresponds to k=O. 

Let there also exist a longitudinal magnetic field perturbation, BL = BL(s), with the 

same longitudinal mode, 2nkl L , as a,. As a functioii of time, t=s/v, L=vT, 

a,( t )  = SO, a cos(2nt I T )  , (6) 

BL(t) =bcos(2,.nktlT+Q). (7) 

The longitudinal magnetic field does not perturb the beam dynamics of the muons moving 

along the equilibrium orbit. Let us consider only these ideal muons, assuming also the 

absence of any perturbations but (6)-which can be a result of a lattice design-and (7), 

the undesigned perturbation. The BMT equations written for the 4-dimensional lab-frame 

spin in the cylindrical coordinates are very simple in the presence of only (6) and (7). The 

successive transformation of the lab-frame spin projections into the rest frame is also 

elementary for the ideal muons: 

s i  =sR; s;=sv; Sf,=y(SL-pSO), (8) 

where so is the 4th component of the spin. Taking into account the orthogonality of the 4- 

spin and 4-momentum, we have so = Ps, , so 
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s; =s,/y. (9) 

s denotes the lab-, and s' the rest-frame spin. All this leads to the following spin 

equations: 

ds; I dt = S ; ~ C O ,  cos 2nkt I T , 

di' I dt = - d L 6 ~ ,  ~ 0 ~ 2 n k t  I T + s@, cos(2nkt I T + $), 

dszl dt = --s;o,  COS(^^?/ T + $). 

(10) 

(1 1) 

(12) 

Here 

oL = eb(1 +a) lmcy , (13) 
while 2n I T = o ,, the muon revolution frequency, so 2nktl T = ko,t. 

Consider first the case $ = 0 .  In this case, equations (10)-(12) have a simple 

analytical solution from which we can see that the perturbation B,(t) with the same 

frequency and phase as o,(t), see (6), (7) is not dangerous. To get the solution we can 

simply introduce a new variable u, du = dt . cos2nktI T ,  after which we have equations 

with constant coefficients. 1 will show here only the solution for s,(t), our main concern. 

If the initial time to = 0 ,  and the initial spin projections s>(O) = sto , s; (0) = sXo , then for 

$ = O  

sin2 ko,t sinkact. 1 
In (14), there are only small fast oscillations of the vertical spin around its initial value. 

The situation is radically different when $ # 0 .  The out-of-phase mode of BL, 

b sin$ . sin ko,t in this case, since we define the 61, -oscillations as o, = 60 , cosko,t , 

rotates spin in the vertical plane. Let us consider a case with only this mode. The equations 

now are: 

ds; I dt = sk6~0, cosko,t (15) 

d&/dt = - S ~ ~ C O , C O S ~ C O ~ ~  - ~ k ~ ~ ~ i n $ s i n k ~ ~ , t  (16) 

ds t ld t  =s$o,sin$sinko,t (17) 



There are no variables now that can help to simplify the equations. The solution of (15)- 

(17) can be found, however, as an infinite Fourier series. The preliminary analysis had 

shown that this series is a sum of terms with a low frequency connecting only the 

longitudinal, s; , and the vertical, s:, projections, and terms with high frequencies of the 

In the first approximation, we can neglect the time derivatives of the slow functions. This 

immediately gives us the first approximation for sh , which is a fast function: 

Substituting this into equations (15) and (17), and keeping there only slow functions (in 

this first approximation), we get equations connecting the vertical spin projection with the 

longitudinal one. 

Therefore, the muon spin in this case is rotated in the vertical plane with the angular 

frequency 

It is amazing that the spin rotates around the radial, not the longitudinal axis-as a result of 

the combination of the "oscillating rotations" around the longitudinal axis (perturbation 

a,), and the "oscillating rotations" around the vertical axis (perturbation 60,). 

The next approximations are not important. The technique of separating slow and 

fast oscillations that I have used here is a well-known one; it was apparently first developed 

by Lyapunov (in the middle of the 19th century) and then by Bogolyubov and others (in the 

middle of the 20th century). 
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Let us estimate the permitted 60,, assuming (for a strong focusing ring) 

k 8 ,  sin.$ = I ,  and the peimitted vertical spin angle, developing during 

Under these assumptions, the permitted 6a, must be less than 7 

a, /mC > 

some 10-4sec , 8, < 

sec-' . Obviously, we will need to carefully minimize the local violations of condition (1). 


