



# Possibilities for Target Testing at AP0

F. Pellemoine

Potential Fermilab Muon Campus & Storage Ring Experiments May 27 2021

#### **Background**

- High-Power Target System is a key element to complete future High Energy Physics (HEP) experiments
- In the recent past, major accelerator facilities limited in beam power due to beam intercepting device survivability
  - Current target technology tolerates ~
     1MW but future projects aim to deliver up to 2-5 MW
- Thermal Shock and Radiation Damage most cross-cutting challenges facing high power target facilities and can lead to premature failure of the components
- Today all the irradiation tests for thermal shock or radiation damage are performed outside FNAL



Photo courtesy of J. Lettry



Iridium rod in HRMT27 exploded with single shot 1.27x10<sup>12</sup> protons



#### Beam-induced thermal shock

- Rapid thermal expansion of material surrounded by cooler material creates a sudden localized area of high compressive stress
  - Stress waves are generated and propagate through the material
- Dynamic stresses may induce plastic deformation, cracking and fatigue failure of the material
- Thermal shock response dependent on:
  - Beam energy deposition rate
  - Specific heat capacity
  - Coefficient of thermal expansion
  - Modulus of elasticity
- It is critical to understand the behavior of irradiated and non-irradiated material for future High Power Targetry development



K. Ammigan,  $\Delta T$  from 10  $\mu$ s beam pulse, 1 MW graphite target fin



S. Bidhar, Dynamic stresses in T2K Ti beam window



## Thermal Shock Study at HiRadMat Facility - CERN

High Radiation to Materials
 (HiRadMat) at CERN is a unique facility for material testing with single shots experiments

Total allocated protons/year: 1.0 e16 (~10 experiments/yr)

|   | CMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | LHC Notify Area CIFF++ CONSTRUCTION CONTINUES  |
|   | ALICE TYOU SPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ļ | HIRADMAI TITE ATLAS AWAKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | AD ELENA ISOLDE  NOOPOLITZINI BOOGSTER  BOOSTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | REX/HIE  RESIDENCE  REALER  RESIDENCE  REALER  REALER  RESIDENCE  REALER  RESIDENCE  REALER  RESIDENCE  REALER  RESIDENCE  REALER  RESIDENCE  REALER  RESIDENCE  RESI |
| ) | UNAC 2 ISSUE SAZONI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | 17NAC13 / LETK 1005-770 mc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Beam Parameters      |                            |  |  |
|----------------------|----------------------------|--|--|
| Beam energy          | 440 GeV                    |  |  |
| Max. pulse energy    | 2.4 MJ                     |  |  |
| Max. bunch intensity | 1.2 x 10 <sup>11</sup>     |  |  |
| No. of bunches       | 1 – 288                    |  |  |
| Max. pulse intensity | 3.5 x 10 <sup>13</sup> ppp |  |  |
| Max. pulse length    | 7.95 µs                    |  |  |
| Gaussian beam size   | 1σ rms: 0.25 – 4 mm        |  |  |





## Previous experiments and what we learned

- 2 experiments HRMT 24 (BeGrid1, 2015) and HRMT43 (BeGrid2, 2018)
  - numerous target and window materials (Be, C, Si-coated C, Si, Ti, novel material) including irradiated and non-irradiated samples
    - Real time dynamic measurements of temperature, strain and displacement
    - Dynamic response measurements to help benchmark and validate highly non-linear numerical simulations
    - PIE of thin disc specimens performed
    - Plastic strain ratcheting observed with multiple pulses

Survivability test with several pulses with no

signs of degradation



Transient temperature – experimental data vs. simulation



Out-of-plane deformation vs. Beam intensity



Out-of-plane deformation – experimental data vs. simulation



Strain gage 1

(circumferential)

Strain gage 2 (axial)



Graphite

slug

LDV laser

location

Temperature

sensor

#### Can we perform similar test at FNAL?

#### HiRadMat beam

- Pulse consists of batches of 72 bunches, separated by 250 ns
  - Avg. bunch length ~16 ns, bunch spacing ~25 ns
  - Each bunch = 1.2e11 protons
- Pulses close each other
  - Let's consider 4 batches (3.5e13 ppp)

#### AP0 pulsed beam

- Pulse separation maybe too large (10 ms) to be considered as a batch
  - Let's just focus on one pulse
    - Pulse length ~120 ns
    - Each pulse 1e12 ppp







#### Can we perform similar test at FNAL?

- Some beam parameters are similar while the beam energy is quite different
- The typical peak temperature increase in a 1 MW neutrino target at Fermilab is ~ 250 K in 10 μs (2.5 × 10<sup>7</sup> K/s)
  - 1 batch at HiRadMat ~ 1.9 μs
  - 1 pulse at AP0 ~ 120 ns
- For similar temperature variation, shorter pulse will give higher compressive stress in the material

|                   | HiRadMat | AP0  |
|-------------------|----------|------|
| Beam sigma [mm]   | 0.25-4   | 0.25 |
| Beam Energy [GeV] | 440      | 8    |
| Proton per pulse  | 3.5e13   | 1e12 |



K. Ammigan, MARS simulation

$$\sigma = \sqrt{\rho E} \cdot \alpha \cdot L \cdot \frac{\Delta T}{\Delta t}$$



# Can we perform similar test at FNAL? Probably YES

- First estimate give us some promise to reproduce reasonable stress in Targetry material
- ONE-pulse (4 pulses) test looks adequate to understand material behavior and observe potential plastic deformation
- Several-pulses test will help to study the cumulative effects of pulsed beam in material
- Real time dynamic measurements of temperature, strain and displacement will allow to carry out similar studies than the one performed at HiRadMat
- More simulations need to be performed to verify if the temperature and the stress level is achievable with AP0 beam
- More investigations need to be done to verify the feasibility of using real time instrumentations in the vault (space requirement, residual dose, control, etc...)



# **Backup Slides**



#### **Online real-time measurements**

- Dynamic response measurements to help benchmark and validate highly non-linear numerical simulations
- POCO ZXF-5Q cylinder: 35 mm long, 30 mm OD
- Beam impact 5 mm from cylindrical edge













## Temperature and strain measurements





#### **Laser Doppler Vibrometer: velocity**

Optomet fiber head located ~100 mm from surface of graphite











#### Laser Doppler Vibrometer: displacement

- Radial displacement data appear to reveal beam pulse structure
- Pulse consists of batches of 72 bunches, separated by 250 ns
  - Avg. bunch length ~16 ns, bunch spacing ~25 ns







#### **Numerical simulation validation**

- Goal is to compare numerical simulation results with experimental results to validate graphite strength model
  - Temperature, dynamic axial/circumferential strain and radial velocity/displacement
- Data analysis ongoing FEA model is being updated with experimental beam parameters
  - MARS heat generation data with actual beam spot size and intensity
  - Beam spot location from BTV and BA-7 alignment info



R. Campos & S. Bidhar, FNAL





