Decays and Oscillations of Muonium

Alexey A. Petrov Wayne State University

Table of Contents:

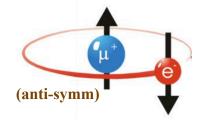
- Introduction: modern notations
 - flavor oscillation parameters: x and y
 - time-dependent and integrated probabilities
- EFT computations of oscillation parameters
 - mass difference
 - width difference
- Experimental methods and difficulties
- Conclusions and things to take home

Mainly based on R. Conlin and AAP, Phys.Rev.D 102 (2020) 9, 095001 e-Print: 2005.10276 [hep-ph]

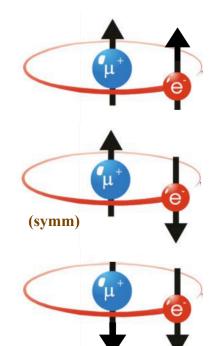
Muon Campus Experiments, 24-27 May 2021

Muonium: just like hydrogen, but simpler!

- Muonium: a bound state of μ⁺ and e⁻
 (μ⁺μ⁻) bound state is *true muonium*
- Muonium lifetime $\tau_{M_{\mu}} = 2.2 \ \mu s$
 - main decay mode: $M_{\mu} \rightarrow e^+ e^- \bar{\nu}_{\mu} \nu_e$
 - annihilation: $M_{\mu} \rightarrow \bar{\nu}_{\mu} \nu_{e}$
- Muonium's been around since 1960's
 - used in chemistry
 - QED bound state physics, etc.
 - New Physics searches (oscillations)



Spin-0 (singlet) paramuonium



Spin-1 (triplet) orthomuonium

Hughes (1960)

The masses of singlet and triplet are almost the same!

Alexey A Petrov (WSU)

16

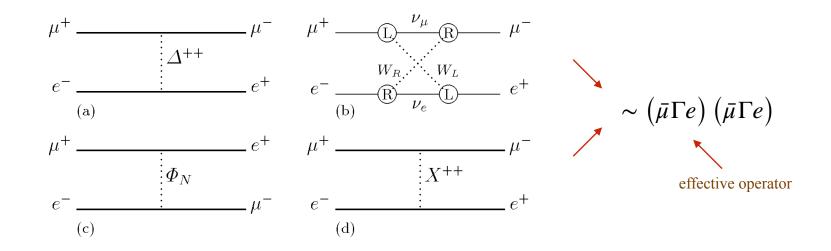
Muon Campus Experiments, 24-27 May 2021

Muonium oscillations: just like $B^0 \overline{B}^0$ mixing, but simpler!

 \star Lepton-flavor violating interactions can change $M_{\mu} \to \overline{M}_{\mu}$

Pontecorvo (1957) Feinberg, Weinberg (1961)

- Such transition amplitudes are tiny in the Standard Model
 - ... but there are plenty of New Physics models where it can happen



- theory: compute transition amplitudes for ALL New Physics models!
- experiment: produce M_{μ} but see for decay products of \overline{M}_{μ}

- If there is an interaction that couples M_{μ} and \overline{M}_{μ} (both SM or NP)
 - combined time evolution: non-diagonal Hamiltonian!

$$i\frac{d}{dt} \begin{pmatrix} |M(t)\rangle \\ |\overline{M}(t)\rangle \end{pmatrix} = \left(m - i\frac{\Gamma}{2}\right) \begin{pmatrix} |M(t)\rangle \\ |\overline{M}(t)\rangle \end{pmatrix}$$

- diagonalization: new mass eigenstates:

$$|M_{\mu_{1,2}}\rangle = \frac{1}{\sqrt{2}} \left[|M_{\mu}\rangle \mp |\overline{M}_{\mu}\rangle \right]$$

new mass eigenstates: mass and lifetime differences

These mass and width difference are observable quantities

Alexey A Petrov (WSU)

Combined evolution = flavor oscillations

- Study oscillations via decays: amplitudes for $M_{\mu} \to f$ and $\overline{M}_{\mu} \to \overline{f}$
 - possibility of flavor oscillations ($M_{\mu} \rightarrow \overline{M}_{\mu} \rightarrow \overline{f}$)

$$\begin{split} |M(t)\rangle &= g_{+}(t) |M_{\mu}\rangle + g_{-}(t) |\overline{M}_{\mu}\rangle, \\ |\overline{M}(t)\rangle &= g_{-}(t) |M_{\mu}\rangle + g_{+}(t) |\overline{M}_{\mu}\rangle, \end{split}$$
 with

$$g_{+}(t) = e^{-\Gamma_{1}t/2}e^{-im_{1}t}\left[1 + \frac{1}{8}(y - ix)^{2}(\Gamma t)^{2}\right],$$

$$g_{-}(t) = \frac{1}{2}e^{-\Gamma_{1}t/2}e^{-im_{1}t}(y - ix)(\Gamma t).$$

- time-dependent width: $\Gamma(M_{\mu} \to \overline{f})(t) = \frac{1}{2} N_f |A_f|^2 e^{-\Gamma t} (\Gamma t)^2 R_M(x, y)$
- oscillation probability:

$$P(M_{\mu} \to \overline{M}_{\mu}) = \frac{\Gamma(M_{\mu} \to \overline{f})}{\Gamma(M_{\mu} \to f)} = R_M(x, y) = \frac{1}{2} \left(x^2 + y^2 \right)$$

- Mixing parameters are related to off-diagonal matrix elements
 - heavy and light intermediate degrees of freedom

$$\begin{pmatrix} m - \frac{i}{2}\Gamma \end{pmatrix}_{12} = \frac{1}{2M_M} \left\langle \overline{M}_{\mu} \left| \mathcal{H}_{\text{eff}} \right| M_{\mu} \right\rangle + \frac{1}{2M_M} \sum_{n} \frac{\left\langle \overline{M}_{\mu} \left| \mathcal{H}_{\text{eff}} \right| n \right\rangle \left\langle n \left| \mathcal{H}_{\text{eff}} \right| M_{\mu} \right\rangle}{M_M - E_n + i\epsilon}$$

$$\text{Local at scale } \mu = M_{\mu} \text{: only } \Delta m$$

$$\text{lepton number change } \Delta L_{\mu} = 2$$

$$\text{Bi-local at scale } \mu = M_{\mu} \text{: both } \Delta m \text{ and } \Delta \Gamma$$

$$\text{lepton number changes: } (\Delta L_{\mu} = 1)^2$$

$$\text{ or } (\Delta L_{\mu} = 0)(\Delta L_{\mu} = 2)$$

each term has contributions from different effective Lagrangians

$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{eff}}^{\Delta L_{\mu}=0} + \mathcal{L}_{ ext{eff}}^{\Delta L_{\mu}=1} + \mathcal{L}_{ ext{eff}}^{\Delta L_{\mu}=2}$$

- ... all of which have a form $\mathcal{L}_{\text{eff}} = -\frac{1}{\Lambda^2} \sum_i c_i(\mu) Q_i$, with $\Lambda \sim \mathcal{O}(TeV)$

Mass difference = real (dispersive) part; width difference: imaginary (absorptive) part

• Mass difference comes from the dispersive part

$$x = \frac{1}{2M_M\Gamma} \operatorname{Re}\left[2\langle \overline{M}_{\mu} | \mathcal{H}_{\text{eff}} | M_{\mu}\rangle + \langle \overline{M}_{\mu} \left| i \int d^4x \ \mathrm{T}\left[\mathcal{H}_{\text{eff}}(x)\mathcal{H}_{\text{eff}}(0)\right] \right| M_{\mu}\rangle\right]$$

– consider only $\Delta L_{\mu} = 2$ Lagrangian contributions (largest?)

$$\mathcal{L}_{\text{eff}}^{\Delta L_{\mu}=2} = -\frac{1}{\Lambda^2} \sum_{i} C_i^{\Delta L=2}(\mu) Q_i(\mu)$$

leading order: all heavy New Physics models are encoded in (the Wilson coefficients of) the five dimension-6 operators

$$Q_{1} = (\overline{\mu}_{L}\gamma_{\alpha}e_{L})(\overline{\mu}_{L}\gamma^{\alpha}e_{L}), \quad Q_{2} = (\overline{\mu}_{R}\gamma_{\alpha}e_{R})(\overline{\mu}_{R}\gamma^{\alpha}e_{R}),$$
$$Q_{3} = (\overline{\mu}_{L}\gamma_{\alpha}e_{L})(\overline{\mu}_{R}\gamma^{\alpha}e_{R}), \quad Q_{4} = (\overline{\mu}_{L}e_{R})(\overline{\mu}_{L}e_{R}),$$
$$Q_{5} = (\overline{\mu}_{R}e_{L})(\overline{\mu}_{R}e_{L}).$$

need to compute matrix elements for both singlet and triplet states

Effective Lagrangians and particular models.

- Effective Lagrangian approach encompasses all models
 - lets look at an example of a model with a doubly charged Higgs Δ^{--}
 - this is common for the left-right models, etc.

$$\mathcal{L}_R = g_{\ell\ell} \overline{\ell}_R \ell^c \Delta + H.c.,$$

– integrate out Δ^{--} to get

$$\mathcal{H}_{\Delta} = \frac{g_{ee}g_{\mu\mu}}{2M_{\Delta}^2} \left(\overline{\mu}_R \gamma_{\alpha} e_R\right) \left(\overline{\mu}_R \gamma^{\alpha} e_R\right) + H.c.,$$

– match to $\mathscr{L}_{\mathrm{eff}}^{\Delta L=2}$ to see that $M_{\Delta}=\Lambda$ and

$$C_2^{\Delta L=2} = g_{ee}g_{\mu\mu}/2.$$

- QED bound state: know leading order wave function!
 - spacial part is the same as in Hydrogen atom

$$\varphi(r) = \frac{1}{\sqrt{\pi a_{M_{\mu}}^3}} e^{-\frac{r}{a_{M_{\mu}}}}$$

- can unambiguously compute decay constants and mixing MEs (QED)

$$\langle 0 | \,\overline{\mu} \gamma^{\alpha} \gamma^{5} e \, \left| M_{\mu}^{P} \right\rangle \; = \; i f_{P} p^{\alpha}, \quad \langle 0 | \,\overline{\mu} \gamma^{\alpha} e \, \left| M_{\mu}^{V} \right\rangle = f_{V} M_{M} \epsilon^{\alpha}(p),$$

$$\langle 0 | \,\overline{\mu} \sigma^{\alpha\beta} e \, \left| M_{\mu}^{V} \right\rangle \; = \; i f_{T} \left(\epsilon^{\alpha} p^{\beta} - \epsilon^{\beta} p^{\alpha} \right),$$

- in the non-relativistic limit all decay constants $f_P = f_V = f_T = f_M$

$$f_M^2 = 4 rac{ert arphi(0) ert^2}{M_M}$$
 (QED version of Van Royen-Weisskopf)

NR matrix elements: "vacuum insertion" = direct computation

Mass difference: results

- Spin-singlet muonium state:
 - matrix elements:

$$\begin{split} \left\langle \bar{M}_{\mu}^{P} \middle| Q_{1} \middle| M_{\mu}^{P} \right\rangle &= f_{M}^{2} M_{M}^{2}, \quad \left\langle \bar{M}_{\mu}^{P} \middle| Q_{2} \middle| M_{\mu}^{P} \right\rangle = f_{M}^{2} M_{M}^{2}, \\ \left\langle \bar{M}_{\mu}^{P} \middle| Q_{3} \middle| M_{\mu}^{P} \right\rangle &= -\frac{3}{2} f_{M}^{2} M_{M}^{2}, \quad \left\langle \bar{M}_{\mu}^{P} \middle| Q_{4} \middle| M_{\mu}^{P} \right\rangle = -\frac{1}{4} f_{M}^{2} M_{M}^{2}, \\ \left\langle \bar{M}_{\mu}^{P} \middle| Q_{5} \middle| M_{\mu}^{P} \right\rangle &= -\frac{1}{4} f_{M}^{2} M_{M}^{2}. \end{split}$$

$$x_P = \frac{4(m_{red}\alpha)^3}{\pi\Lambda^2\Gamma} \left[C_1^{\Delta L=2} + C_2^{\Delta L=2} - \frac{3}{2}C_3^{\Delta L=2} - \frac{1}{4} \left(C_4^{\Delta L=2} + C_5^{\Delta L=2} \right) \right]$$

- Spin-triplet muonium state:
 - matrix elements

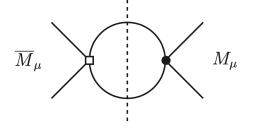
$$\begin{split} &\left\langle \bar{M}^{V}_{\mu} \right| Q_{1} \left| M^{V}_{\mu} \right\rangle \ = \ -3f^{2}_{M}M^{2}_{M}, \quad \left\langle \bar{M}^{V}_{\mu} \right| Q_{2} \left| M^{V}_{\mu} \right\rangle = -3f^{2}_{M}M^{2}_{M}, \\ &\left\langle \bar{M}^{V}_{\mu} \right| Q_{3} \left| M^{V}_{\mu} \right\rangle \ = \ -\frac{3}{2}f^{2}_{M}M^{2}_{M}, \quad \left\langle \bar{M}^{V}_{\mu} \right| Q_{4} \left| M^{V}_{\mu} \right\rangle = -\frac{3}{4}f^{2}_{M}M^{2}_{M}, \\ &\left\langle \bar{M}^{V}_{\mu} \right| Q_{5} \left| M^{V}_{\mu} \right\rangle \ = \ -\frac{3}{4}f^{2}_{M}M^{2}_{M}. \end{split}$$

$$x_V = -\frac{12(m_{red}\alpha)^3}{\pi\Lambda^2\Gamma} \left[C_1^{\Delta L=2} + C_2^{\Delta L=2} + \frac{1}{2}C_3^{\Delta L=2} + \frac{1}{4} \left(C_4^{\Delta L=2} + C_5^{\Delta L=2} \right) \right]$$

Experimental constraints on x result on experimental constraints on Wilson coefficients $C_k^{\Delta L=2}$ that encode all information about possible New Physics contributions

R. Conlin and AAP, arXiv: 2005.10276

- Width difference comes from the absorptive part
 - light SM intermediate states ($e^+e^-, \gamma\gamma, \bar{\nu}\nu, etc$.)



- $\bar{\nu}\nu$ state gives parametrically largest contribution

- Muonium two- and there-body decays
 - two-body decays ($M^{V,P}_{\mu} \rightarrow e^+e^-, \gamma\gamma, etc$) are dominated by New Physics
 - probe different combinations of SM EFT Wilson coefficients
 - e.g. $\mu \rightarrow 3e$ vs. $M_{\mu} \rightarrow e^+e^-$ (also phase space enhancement)

R. Conlin and AAP

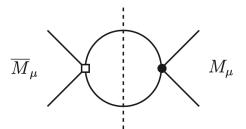
- can $M_{\mu} \rightarrow invisible$ (SM: $M_{\mu} \rightarrow \nu_e \bar{\nu}_{\mu}$) be measured?

Gninenko, Krasnikov, Matveev. Phys.Rev. D87 (2013) 015016

Width difference

- Width difference comes from the absorptive part
 - light SM intermediate states ($e^+e^-, \gamma\gamma, \bar{\nu}\nu, etc$.)

$$\bar{
u}
u$$
 state gives parametrically largest contribution



$$y = \frac{1}{2M_M\Gamma} \operatorname{Im} \left[\left\langle \overline{M}_{\mu} \left| i \int d^4 x \operatorname{T} \left[\mathcal{H}_{\text{eff}}(x) \mathcal{H}_{\text{eff}}(0) \right] \right| M_{\mu} \right\rangle \right]$$

$$= \frac{1}{M_M\Gamma} \operatorname{Im} \left[\left\langle \overline{M}_{\mu} \left| i \int d^4 x \operatorname{T} \left[\mathcal{H}_{\text{eff}}^{\Delta L_{\mu}=2}(x) \mathcal{H}_{\text{eff}}^{\Delta L_{\mu}=0}(0) \right] \right| M_{\mu} \right\rangle \right]$$

New Physics $\Delta L_{\mu} = 2$ contribution

Standard Model $\Delta L_{\mu} = 0$ contribution

$$\mathcal{L}_{\text{eff}}^{\Delta L_{\mu}=2} = -\frac{1}{\Lambda^2} \sum_{i} C_i^{\Delta L=2}(\mu) Q_i(\mu) \qquad \mathcal{L}_{\text{eff}}^{\Delta L_{\mu}=0} = -\frac{4G_F}{\sqrt{2}} \left(\overline{\mu}_L \gamma_{\alpha} e_L \right) \left(\overline{\nu_e}_L \gamma^{\alpha} \nu_{\mu_L} \right) \qquad \mathcal{L}_{\text{eff}}^{\Delta L_{\mu}=0} = -\frac{4G_F}{\sqrt{2}} \left(\overline{\mu}_L \gamma_{\alpha} e_L \right) \left(\overline{\nu_e}_L \gamma^{\alpha} \nu_{\mu_L} \right) \qquad \mathcal{L}_{\text{eff}}^{\Delta L_{\mu}=0} = -\frac{4G_F}{\sqrt{2}} \left(\overline{\mu}_L \gamma_{\alpha} e_L \right) \left(\overline{\nu_e}_L \gamma^{\alpha} \nu_{\mu_L} \right) \qquad \mathcal{L}_{\text{eff}}^{\Delta L_{\mu}=0} = -\frac{4G_F}{\sqrt{2}} \left(\overline{\mu}_L \gamma_{\alpha} e_L \right) \left(\overline{\nu_e}_L \gamma^{\alpha} \nu_{\mu_L} \right) \qquad \mathcal{L}_{\text{eff}}^{\Delta L_{\mu}=0} = -\frac{4G_F}{\sqrt{2}} \left(\overline{\mu}_L \gamma_{\alpha} e_L \right) \left(\overline{\nu_e}_L \gamma^{\alpha} \nu_{\mu_L} \right) \qquad \mathcal{L}_{\text{eff}}^{\Delta L_{\mu}=0} = -\frac{4G_F}{\sqrt{2}} \left(\overline{\mu}_L \gamma_{\alpha} e_L \right) \left(\overline{\nu_e}_L \gamma^{\alpha} \nu_{\mu_L} \right) \qquad \mathcal{L}_{\text{eff}}^{\Delta L_{\mu}=0} = -\frac{4G_F}{\sqrt{2}} \left(\overline{\mu}_L \gamma_{\alpha} e_L \right) \left(\overline{\nu_e}_L \gamma^{\alpha} \nu_{\mu_L} \right) \qquad \mathcal{L}_{\text{eff}}^{\Delta L_{\mu}=0} = -\frac{4G_F}{\sqrt{2}} \left(\overline{\mu}_L \gamma_{\alpha} e_L \right) \left(\overline{\nu_e}_L \gamma^{\alpha} \nu_{\mu_L} \right) \qquad \mathcal{L}_{\text{eff}}^{\Delta L_{\mu}=0} = -\frac{4G_F}{\sqrt{2}} \left(\overline{\mu}_L \gamma_{\alpha} e_L \right) \left(\overline{\nu_e}_L \gamma^{\alpha} \nu_{\mu_L} \right) \qquad \mathcal{L}_{\text{eff}}^{\Delta L_{\mu}=0} = -\frac{4G_F}{\sqrt{2}} \left(\overline{\mu}_L \gamma_{\mu_L} \gamma^{\alpha} \nu_{\mu_L} \right) \qquad \mathcal{L}_{\text{eff}}^{\Delta L_{\mu}=0} = -\frac{4G_F}{\sqrt{2}} \left(\overline{\mu}_L \gamma_{\mu_L} \gamma^{\alpha} \nu_{\mu_L} \right) \left(\overline{\mu}_L \gamma^{\alpha} \nu_{\mu_L} \right) \qquad \mathcal{L}_{\text{eff}}^{\Delta L_{\mu}=0} = -\frac{4G_F}{\sqrt{2}} \left(\overline{\mu}_L \gamma^{\alpha} \nu_{\mu_L} \right) \left(\overline{\mu}_L \gamma^{\alpha} \nu_{\mu_L} \right) \left(\overline{\mu}_L \gamma^{\alpha} \nu_{\mu_L} \right) \qquad \mathcal{L}_{\text{eff}}^{\Delta L_{\mu}=0} = -\frac{4G_F}{\sqrt{2}} \left(\overline{\mu}_L \gamma^{\alpha} \nu_{\mu_L} \right) \left(\overline{\mu}_L \gamma^{\alpha} \nu_{\mu_L} \right)$$

 $Q_7 = \left(\overline{\mu}_R \gamma_\alpha e_R\right) \left(\overline{\nu_\mu}_L \gamma^\alpha \nu_{eL}\right)$

• Spin-singlet muonium state:

$$y_P = \frac{G_F}{\sqrt{2}\Lambda^2} \frac{M_M^2}{\pi^2 \Gamma} (m_{red}\alpha)^3 \left(C_6^{\Delta L=2} - C_7^{\Delta L=2} \right)$$

• Spin-triplet muonium state:

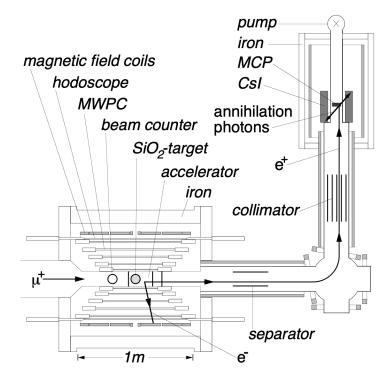
$$y_V = -\frac{G_F}{\sqrt{2}\Lambda^2} \frac{M_M^2}{\pi^2 \Gamma} (m_{red}\alpha)^3 \left(5C_6^{\Delta L=2} + C_7^{\Delta L=2}\right)$$

• Note: y has the same $1/\Lambda^2$ suppression as the mass difference!

R. Conlin and AAP, arXiv: 2005.10276

Experimental setup and constraints

- Similar experimental set ups for different experiments
 - example: MACS at PSI
 - idea: form M_{μ} by scattering muon (μ^+)
 beam on SiO₂ target
- A couple of "little inconveniences":
 - ➡ how to tell f apart from \overline{f} ?
 - $M_{\mu} \rightarrow f$ decay: $M_{\mu} \rightarrow e^+ e^- \bar{\nu}_{\mu} \nu_e$
 - $\overline{M}_{\mu} \rightarrow \overline{f} \text{ decay: } \overline{M}_{\mu} \rightarrow e^+ e^- \overline{\nu}_e \nu_{\mu}$
 - \bar{f} : fast e^- (~53 MeV), slow e^+ (13.5 eV)
 - ➡ oscillations happen in magnetic field
 - ... which selects M_μ vs. \overline{M}_μ



Muonium-Antimuonium Conversion Spectrometer (MACS)

The most recent experimental data comes from 1999! Time is ripe for an update!

4

L. Willmann, et al. PRL 82 (1999) 49

- MACS: observed 5.7×10^{10} muonium atoms after 4 months of running
 - magnetic field is taken into account (suppression factor)

Interaction type	2.8 µT	0.1 T	100 T
SS	0.75	0.50	0.50
PP	1.0	0.9	0.50
$(V \pm A) \times (V \pm A)$ or			
$(S \pm P) \times (S \pm P)$	0.75	0.35	0.0
$(V \pm A) \times (V \mp A)$ or			
$(S \pm P) \times (S \mp P)$	0.95	0.78	0.67

L. Willmann, et al. PRL 82 (1999) 49

no oscillations have been observed

- We can now put constraints on the Wilson coefficients of effective operators from experimental data (assume single operator dominance)
 - presence of the magnetic field

$$P(M_{\mu} \to \overline{M}_{\mu}) \le 8.3 \times 10^{-11} / S_B(B_0)$$

no separation of spin states: average

$$P(M_{\mu} \to \overline{M}_{\mu})_{\exp} = \sum_{i=P,V} \frac{1}{2S_i + 1} P(M_{\mu}{}^i \to \overline{M}_{\mu}{}^i)$$

- set Wilson coefficients to one, set constraints on the scale probed

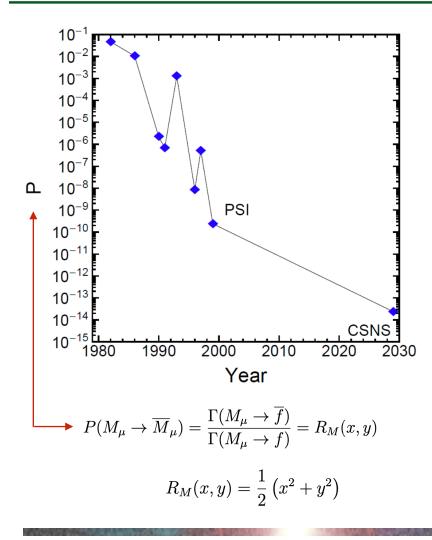
5.4
5.4
5.4
2.7
2.7
$.58 \times 10^{-3}$
$.38 \times 10^{-3}$

Alexey A Petrov (WSU)

Muon Campus Experiments, 24-27 May 2021

Other new muon sources

Fundamental science with EMuS (China)



- The latest bound was done at PSI more than 20 years ago with a muon intensity $8 \times 10^6 \mu^+/s$ and high-precision magnetic spectrometer.
- Timing resolution in detector: ~ ns
- Position resolution in detector: ~ mm
- EMuS plan to offer $10^9 \mu^+/s$
- Current timing resolution in detector: ~ ps
- Current position resolution in detector:~µs
- Expect to be improved by > O(10²)?

MACE experiment at EMuS (Chinese SNS) Jian Tang, talk at RPPM meeting (Snowmass 2021)

1

- Muonium oscillations
 - a heavy-light state that can exhibit flavor oscillations (like K, B, and D mesons)
 - oscillations probe New Physics without complications of QCD
 - results can be matched to particular models of New Physics
 - found that both Δm and $\Delta \Gamma$ parametrically scale as $\mathscr{O}(\Lambda^{-2})$
- Muonium decays
 - the only SM-dominated annihilation mode is $\nu \bar{\nu}$ (not observed)
 - lifetime differences $\Delta\Gamma$ (SM intermediate state, NP in ΔL_u operators)
 - two-body decays: different constraints on SM EFT Wilson coefficients
- Muonium is the simplest atom: atomic physics
 - level splitting (Lamb shift): probe NP w/out QCD complications

MuSEUM experiment (J-PARC)

- Last experimental data is from 1999! Need new data!
 - we already probe the LHC energy domain!

• A possibility of using muon beams at CMP facilities

Jian Tang, talk at RPPM meeting (Snowmass 2021)

	Proton	Surface muons		Decay muons			
	driver [MW]	Intensity [1E6/s]	Polarization [%]	Spread [%]	energy [MeV/c]	Intensity [1E6/s]	Spread [%]
PSI	1.3	420	90	10	85-125	240	3
ISIS	0.16	1.5	95	<15	20-120	0.4	10
RIKEN/RAL	0.16	0.8	95	<15	65-120	1	10
JPARC	1	100	95	15	33-250	10	15
TRIUMF	0.075	1.4	90	7	20-100	0.0014	10
EMuS	0.005	83	50	10	50- <mark>450</mark>	16	10
Baby EMuS	0.005	1.2	95	10			

Facility	Source Type	Intensity (µ+/sec)*		
ISIS	pulsed	1.5×10^{6}		
J-PARC	continuous	1.8×10^{6}		
PSI	continuous	7.0×10 ⁴		
TRIUMF	pulsed	5.0×10 ⁶		
SEEMS	pulsed	1.9×10 ⁸		

Alexey A Petrov (WSU)

×5 CSNS-II upgrade

- Muonium Antimuonium Conversion Experiment (MACE) EMuS at CSNS • Effective Lagrangians for $\Delta L_{\mu} = 0$, $\Delta L_{\mu} = 1$, and $\Delta L_{\mu} = 2$

$$\begin{split} \mathcal{L}_{\text{eff}}^{\Delta L_{\mu}=0} &= -\frac{4G_F}{\sqrt{2}} \left(\overline{\mu}_L \gamma_{\alpha} e_L \right) \left(\overline{\nu_{eL}} \gamma^{\alpha} \nu_{\mu_L} \right) \\ \mathcal{L}_{\text{eff}}^{\Delta L_{\mu}=1} &= -\left(\frac{1}{\Lambda^2} \sum_f \left[\left(C_{VR}^f \, \overline{\mu}_R \gamma^{\alpha} e_R + C_{VL}^f \, \overline{\mu}_L \gamma^{\alpha} e_L \right) \, \overline{f} \gamma_{\alpha} \gamma_5 f \right. \\ &+ \left(C_{AR}^f \, \overline{\mu}_R \gamma^{\alpha} e_R + C_{AL}^q \, \overline{\mu}_L \gamma^{\alpha} e_L \right) \, \overline{f} \gamma_{\alpha} \gamma_5 f \\ &+ m_e m_f G_F \left(C_{SR}^f \, \overline{\mu}_R e_L + C_{SL}^f \, \overline{\mu}_L e_R \right) \, \overline{f} f \\ &+ m_e m_f G_F \left(C_{PR}^f \, \overline{\mu}_R e_L + C_{PL}^f \, \overline{\mu}_L e_R \right) \, \overline{f} \gamma_5 f \\ &+ m_e m_f G_F \left(C_{TR}^f \, \overline{\mu}_R \sigma^{\alpha\beta} e_L + C_{TL}^f \, \overline{\mu}_L \sigma^{\alpha\beta} e_R \right) \, \overline{f} \sigma_{\alpha\beta} f + h.c. \, \right], \\ \mathcal{L}_{\text{eff}}^{\Delta L_{\mu}=2} &= \left(\frac{1}{\Lambda^2} \sum_i C_i^{\Delta L=2}(\mu) Q_i(\mu) \\ &\qquad Q_6 = \left(\overline{\mu}_L \gamma_{\alpha} e_L \right) \left(\overline{\nu_{\mu_L}} \gamma^{\alpha} \nu_{eL} \right), \quad Q_7 = \left(\overline{\mu}_R \gamma_{\alpha} e_R \right) \left(\overline{\nu_{\mu_L}} \gamma^{\alpha} \nu_{eL} \right) \end{split}$$

• $\Delta\Gamma$: naively $\mathcal{O}(\Lambda^{-4})$ from double $\Delta L_{\mu} = 1$ insertion! But not always...