Muχe

A Search for Familons in Muon decay using HPGe detectors

Shihua Huang, Faith Bergin, Jijun Chen,

David Koltick

Department of Physics and Astronomy

Purdue University

West Lafayette Indiana USA 4709

Potential Fermilab Muon Campus & Storage Ring Experiments 24-27 May 2021

5/26/21

Introduction to the Familon^[1,2,3,4]

Major puzzle: why do quark and lepton families replicate?

Postulate some family symmetry:

- (1) discrete symmetries
- (2) continuous and local
- (3) continuous and global

Any number of symmetry groups or any combination of (1),(2),(3).

Family symmetries must be spontaneously broken, options are:

- (1) Domain walls: Can't be studied in particle physics labs
- (2) Continuous symmetries are highly constrained. From k^0 $\overline{k^0}$ mixing
- (3) Global symmetry implies massless Nambu-Goldstone bosons, called "Familons".
 - (a)Familons are from the spontaneously broken family symmetry.
 - (b)This family symmetry may be either Abelian or non-Abelian.

Introduction to the Familon^[1,2,3,4]

The couplings of familons at low energies are determined by the nonlinear realization of the family symmetry. The couplings are:

$$\frac{1}{F}\partial_{\mu}f^{a}\bar{\varphi}_{L}^{i}\gamma^{\mu}T_{ij}^{a}\varphi_{L}^{j}$$

Where F is the family symmetry breaking scale, i.e., the familon decay constant, f^{a} are the familons, T^{a} are the generators of the broken symmetry, and the φ_{L} are fermion fields in terms of which the flavor symmetry is defined. The strength of the familon coupling is therefore inversely proportional to F and can be constrained for a given family symmetry group in a model-independent manner

Familon Search Experiment $\mu^+ -> e^+ + \chi$ $\mu^{\mu} = 2^{10^4}$ Motivations $\mu^{\mu} = 2^{10^5}$

- 1. Coupling factor
- ---Derivative coupling, $\sigma{\sim}g$, not dependent on mass
- 2. Plot from review paper [9]
- --- Mu χ e searches in magnetic spectrometers blind spots

FIG.1. Summary of the experimental upper limits on the $\mu^+ \rightarrow e^+ + \chi$ branching ratio.

5/26/21

Magnetic spectrometer blind spots

Purdue University

Mu2e Tracker

Search for Familon in Mu2e Experiment

- Using data from a Mu2e $\mu^+ \rightarrow e^+ v v$ calibration run at 50% B-field
- Thesis Project of Shihua Huang
- Sensitive to mass range <~60 MeV/c², complementary to this search.

Mu χ e A Familon Search Experiment Using HPGe Detectors

D. Koltick, S. Huang, J. Chen, F. Bergin, H. Cao

Positive Muon Decay $\mu^+ \longrightarrow \chi_{Familon} + e^+$

Search for Familon's in the Magnetic Spectrometers Blind Spot Familon's Mass Range from 90 to 105 MeV

Derenzo-Chicago Bubble Chamber[7]

Studied 2 million μ^+ decays

FIG. 3. Sample events. Picture shows two 1.4-MeV/c internalconversion electrons emerging from the Mylar strip (faint horizontal line), and two $\pi^+ - \mu^+ - e^+$ decay chains. One of the positrons has a momentum of 0.7 MeV/c.

Μυχε

Fermilab Fast μ + Beam

- Trigger detectors have ~100 MeV Signals, Large and Distinguishable from Background Signals
- Thick Degrader \rightarrow Filters Background
- Large Pulses \rightarrow Excellent Timing
- Active Shielding →
 Complete Energy Measurement
- Passive Pb Shielding → Reduced Background
- Charged Particle Tracking → Points to Estimated Stopping Location.

$Mu\chi e$ Cosmic Ray Test Stand

5/26/21

Muχe Cosmic Ray Test Stand at Purdue University

50% HPGe

Large Nal Trigger/Veto Detectors

Mu χ e Cosmic Ray Test Stand at Purdue

Stopped muon with decay event

Cosmic Ray Stopping Muon Trigger

Nal detector 1 + HPGe **not** Nal detector 2

Nal detector 1, 10~20MeV trigger

HPGe Trigger ~10 mV

Nal detector 2 is a trigger veto set at 0 MeV

Collected File numbers: 161802 Number of stops found: 1837 $\frac{\text{stops}}{\text{triggers}} = \frac{1837}{161802} = 0.0114$

Want to improve the stops/triggers ratio to 0.1

5/26/21

Mu Lifetime in Cosmic data

- Fit background per bin: 0.1 ± 0.4
- Estimated the background per bin:
- Events x DAQ window x HPGe background rate 1.61 x10⁵ x 8 us x 17cps

= 0.27 counts/bins

The e⁺ Signal and Energy Acceptance

GEANT simulated energy deposition of mono-energetic positrons and acceptance in a 100% HPGe detector. (Left) Spectrum of $10^6 e^+$ having KE = 0.5 MeV and (Right) Estimated acceptance combining the 1st escape peak(KE+511keV) and the full energy peak(KE+2x511keV) over the e^+ energy range from 0-10MeV.

5/26/21

Define Search Limits

• The 'search window' is the combination, positron's 1st escape peak plus the full energy peak,

window =
$$[E_{1st-escape} \pm 2\sigma] + [E_{full-energy} \pm 2\sigma]$$

- The 90% confidence level is estimated assuming a signal with an amplitude equivalent to a 1.28 σ effect in this search window.
- The **'discovery' limit** is set to 5σ in the combined 1st escape peak and full energy peak window.

Background from room

Integrated HPGe Rate as a Function of Energy

Purdue University

Background counts

• Trigger at $\frac{100}{1}$ (for Cosmic Ray)

 10^{10} x 6 μs x 0.01215 =729 counts background at the search region 1~ 1.5MeV

- Trigger at $\frac{10}{1}$ (Goal at Fermilab)
- 10^9 x 6 μs x 0.01215 =73 counts background at the search region 1~ 1.5MeV
- Will be reduced by rejection of double " decay signals"

GEANT simulation of energy deposition of Michel decay positrons inside a 100% HPGe detector, showing (Left) the full decay energy range and (Right) the energy range of interest for this analysis.

5/26/21

Mu χ e A Familon Search Experiment Using HPGe Detectors

D. Koltick, S. Huang, J. Chen, F. Bergin, H. Cao

Positive Muon Decay $\mu^+ \longrightarrow \chi_{Familon} + e^+$ Search for Familon's in the Magnetic Spectrometers Blind Spot Familon's Mass Range from 90 to 105 MeV

Branching Ratio Sensitivity Limits for 1 year of data collection 10⁻⁶ to 10⁻⁷.

Reference

- [1] F, Wilczek, Phys. Rev. Lett.49(1982) 1549
- [2] D. Dicus et. al., Phys. Rev. D18(1978) 1829
- [3] S. Adler et. al., Phys. Rev. Lett.79(1997) 2204
- [4] J.L. Feng, T. Moroi, H. Murayama, and E. Schnapka, hepph/9709411
- [5] D. Bryman and E. Clifford, Phys. Rev. Lett.57(1986) 2787
- [6] R. Bilger et. al., Phys. Lett. B446(1999) 363
- [7] S. Derenzo, Phys. Rev.181(1969) 1854
- [8] R. Bayes et. al., Phys. Rev. D91(2015) 052020
- [9] A. AguilarArevalo, et. al., Phys. Rev. D101(2020) 052014
- [10] R.S. Henderson et.al., Nuclear Instruments and Methods in Physics Research A 548(2005)306
- [11] A. Jodidio et al. Phys. Rev. D34 (1986)