The REDTOP experiment: Rare Eta Decays To Explore New Physics

A. Mazzacane

Fermilab

Muon Campus Workshop 2021

May 26, 2021

Why the η meson is special?

It is a Goldstone boson

Symmetry constrains its QCD dynamics

It is an eigenstate of the C, P, CP and G operators (very rare in nature): $I^G J^{PC} = 0^+ 0^{-+}$

It can be used to test C and CP invariance

All its additive quantum numbers are zero

$$Q = I = j = S = B = L = 0$$

Its decays are not influenced by a change of flavor (as in K decays) and violations are "pure"

All its possible strong decays are forbidden in lowest order by P and CP invariance, G-parity conservation and isospin and charge symmetry invariance

Contributions from higher orders are enhanced by a factor of ~100,000

It is a very narrow state (Γ_n =1.3 KeV vs

EM decays are forbidden in lowest order by C invariance and angular momentum conservation

Excellent for testing invariances

 Γ_0 =149 MeV)

The η decays are flavor-conserving reactions

Decays are free of SM backgrounds for new physics search

Detecting BSM Physics with REDTOP (η/η) factory

Assume a yield ~ 10^{13} η mesons/yr and ~ $10^{11}\eta'$ mesons/yr

C, T, CP-violation

- $lue{}$ CP Violation via Dalitz plot mirror asymmetry: $\eta o \pi^{\circ} \pi^{\dagger} \pi$
- $lue{}$ CP Violation (Type I P and T odd , C even): $\eta -> 4\pi^{\circ} \rightarrow 8\gamma$
- ullet CP Violation (Type II C and T odd , P even): $\eta \to \pi^{\circ} \, \ell \ell \ell$ and $\eta \to 3\gamma$
- Test of CP invariance via μ longitudinal polarization: $\eta \rightarrow \mu^{+}\mu^{-}$
- Test of CP invariance via $\gamma*$ polarization studies: $\eta \to \pi^+\pi^-e^+e^-$ and $\eta \to \pi^+\pi^-\mu^+\mu^-$
- Test of CP invariance in angular correlation studies: $\eta \rightarrow \mu^{+}\mu^{-}e^{+}e^{-}$
- Test of T invariance via μ transverse polarization: $\eta \to \pi^0 \mu^+ \mu^-$ and $\eta \to \gamma \mu^+ \mu^-$
- $\begin{tabular}{ll} \square $ \textit{CPT violation: μ polariz. in $\eta \to \pi^* \mu \ v$ vs $\eta \to \pi \ \mu^* v$ and γ polarization in $\eta \to \gamma \ \gamma$ } \end{tabular}$

Other discrete symmetry violations

- Lepton Flavor Violation: $\eta \rightarrow \mu^+ e^- + c.c.$
- Double lepton Flavor Violation: $\eta \rightarrow \mu^{\dagger} \mu^{\dagger} e^{-}e^{-} + c.c.$

Non- η/η' based BSM Physics

- □ Dark photon and ALP searches in Drell-Yan processes: qqbar \rightarrow A'/a \rightarrow I+I-
- □ ALP's searches in Primakoff processes: $p Z \rightarrow p Z a \rightarrow l^{+}l^{-}$ (F. Kahlhoefer)
- □ Charged pion and kaon decays: $\pi + \rightarrow \mu^+ v A' \rightarrow \mu^+ v e^+ e^-$ and $K + \rightarrow \mu^+ v A' \rightarrow \mu^+ v e^+ e^-$
- □ Neutral pion decay: $\pi^{o} \rightarrow \gamma A' \rightarrow \gamma e^{+}e^{-}$

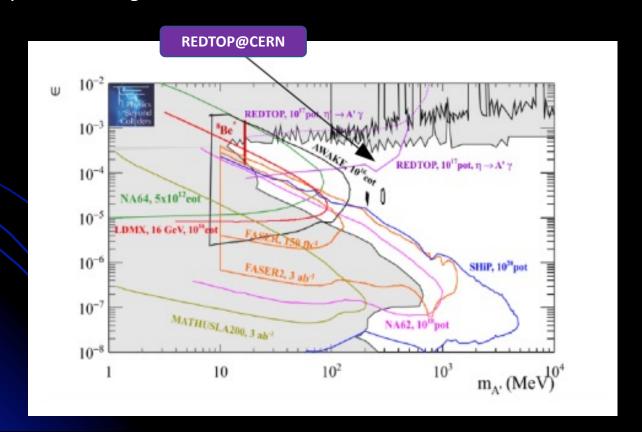
New particles and forces searches

- Scalar meson searches (charged channel): $\eta \to \pi^o H$ with $H \to e^+ e^-$ and $H \to \mu^+ \mu^-$
- □ Dark photon searches: $\eta \rightarrow \gamma A'$ with $A' \rightarrow \ell \ell$
- □ Protophobic fifth force searches : $\eta \rightarrow \gamma X_{17}$ with $X_{17} \rightarrow e^+e^-$
- **QCD** axion searches : $\eta \rightarrow \pi \pi a_{17}$ with $a_{17} \rightarrow e^+e^-$
- New leptophobic baryonic force searches : $\eta \rightarrow \gamma B$ with $B \rightarrow e^+e^-$ or $B \rightarrow \gamma \pi^o$
- □ Indirect searches for dark photons new gauge bosons and leptoquark: $\eta \rightarrow \mu^{\dagger} \mu^{\dagger}$ and $\eta \rightarrow e^{\dagger} e^{-}$
- □ Search for true muonium: $\eta \to \gamma (\mu^+ \mu^-)|_{2M_{\mu}} \to \gamma e^+ e^-$
- Lepton Universality

Other Precision Physics measurements

- □ Proton radius anomaly: $\eta \rightarrow \gamma \mu^{+}\mu^{-}$ vs $\eta \rightarrow \gamma e^{+}e^{-}$
- \blacksquare All unseen leptonic decay mode of η / η (SM predicts 10^{-6} - 10^{-9})

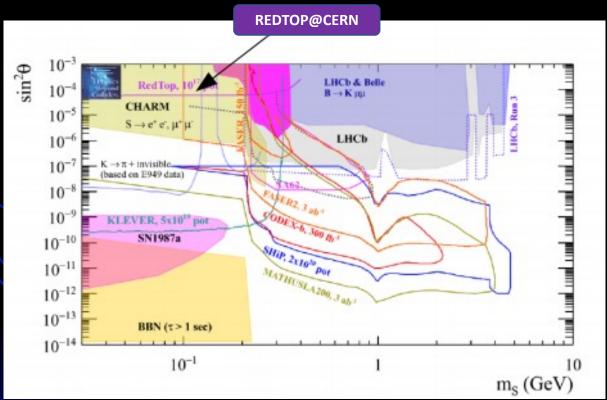
High precision studies on medium energy physics


- Nuclear models
- Chiral perturbation theory
- Non-perturbative QCD
- □ Isospin breaking due to the u-d quark mass difference
- Octet-singlet mixing angle
- Electromagnetic transition form-factors (important input for q-2)

Dark photon searches

$\eta \rightarrow \gamma A'$ with $A' \rightarrow \mu^{+} \mu^{-}$ and $e^{+} e^{-}$

- □ Studied within the "Physics Beyond Collider" program at CERN for 10¹⁷ POT
- □ FNAL and BNL can provide 10x more POT
- Only "bump hunt analysis". Adding vertexing improve the sensitivity to physics BSM by 10x
- A protophobic gauge boson might explain the 17 MeV anomaly in Beryllium nuclear decays https://arxiv.org/abs/1608.03591

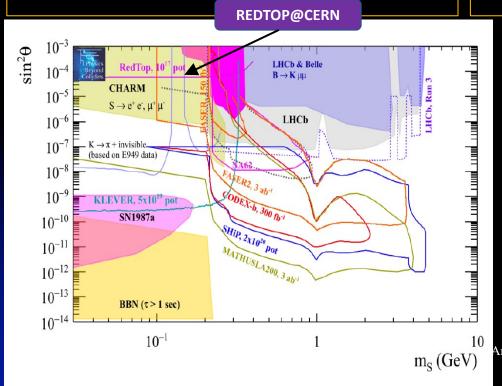


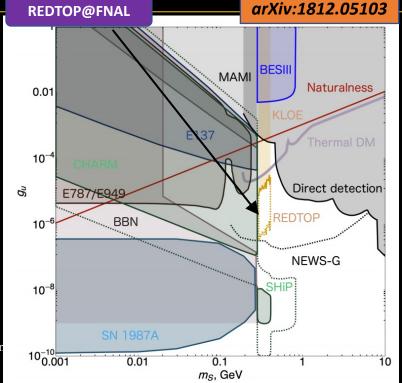
Searches for light scalar mesons

$\eta \rightarrow \pi^{o} H$ with $H \rightarrow \mu^{+} \mu^{-}$ and $e^{+} e^{-}$

- Viable DM candidate (in certain circumstances) coupling to Higgs portal M. Pospelov, A.
 Ritz and M. Voloshin, Phys. Rev. D 78, 115012 (2008)
- Studied within the "Physics Beyond Collider" program at CERN for 10¹⁷ POT
- FNAL and BNL can provide 10x more POT
- Only "bump hunt analysis". Adding vertexing improve the sensitivity to physics BSM by 1000x

Searches for light scalar mesons

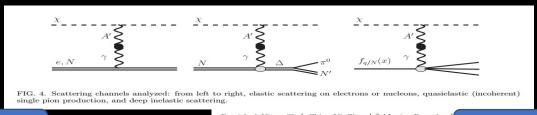


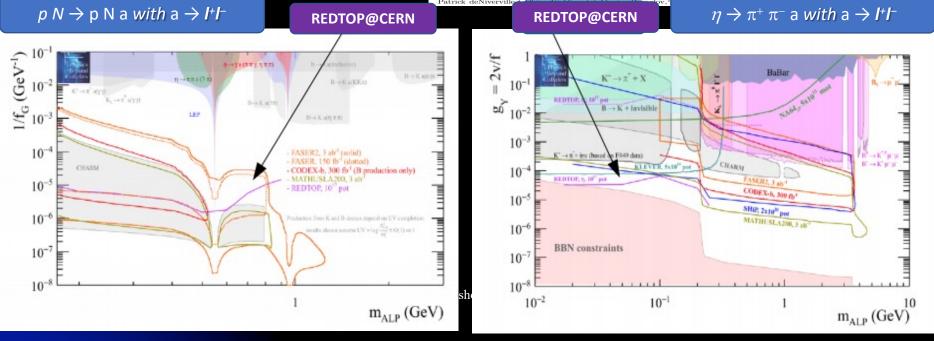

MINIMAL SM HIGGS EXTENSION

- Studied within the "Physics Beyond Collider Program at CERN for 10¹⁷ POT
- FNAL and BNL can provide 10x more POT
- Only "bump hunt analysis" Vertexing add 10x more sensitivity

HADROPHILIC SCALAR MEDIATOR

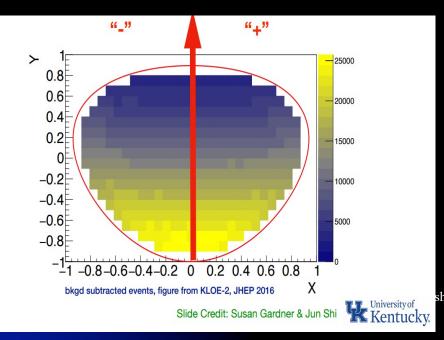
- □ Studied in *arXiv*:1812.05103
- Only "bump hunt", no vertexing

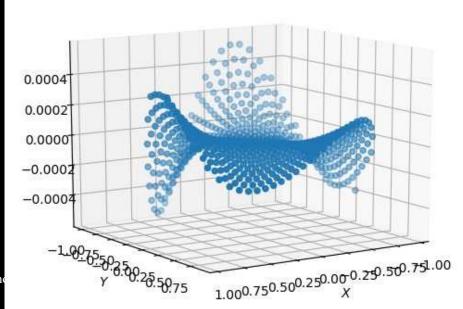




Searches for ALPs with fermion or gluon coupling

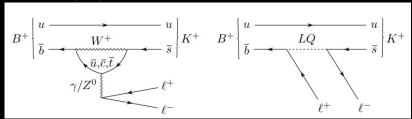
- Beam emitted ALP's from the following processes:
 - □ Drell-Yan processes: $qqbar \rightarrow A'/a \rightarrow I^{\dagger}I^{\dagger}$
 - Proton bremsstrahlung processes: $p N \rightarrow p N A'/a$ with $A'/a \rightarrow I^{\dagger}I^{\dagger}$ (J. Blümlein and J. Brunner)
 - □ Primakoff processes: $p Z \rightarrow p Z a \rightarrow l^+l^-$ (F. Kahlhoefer, et. Al.)
- Only "bump hunt analysis" with 10^{17} POT (CERN). Will add vertexing+timing to the analysis.
- Redtop@PIP-II will provide x100 sensitivity (ALPACA study).




CP Violation from Dalitz plot mirror asymmetry

in $\eta \rightarrow \pi^+\pi^-\pi^o$

- ullet CP-violation from this process is not bounded by EDM as is the case for the $\eta{\to}4\pi$ process.
- Complementary to EDM searches even in the case of T and P odd observables
- □ The flavor structure of the eta is different from the nucleus
- Current PDG limits consistent with no asymmetry
- \blacksquare REDTOP will collect $4x10^{11}$ such decay (factor 100 in stat. error)
- New model in GenieHad (collaboration with S. Gardner & J. Shi UK) based on PHYSICAL REVIEW D 101, 115038 (2020)



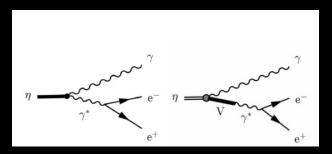
Lepton Universality Test

LHCb latest results: with $B+ \rightarrow \mu^+ \mu K^+ \text{ vs } e^+ e^- K^+$

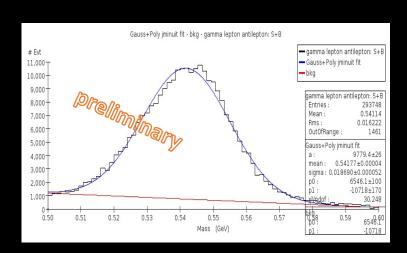
- Based on 3850 vs 1640 evts ($BR_{SM} = 10^{-6}$)
- \square 3.1 σ discrepancy vs SM

 η/η' factories are especially important to confirm the anomaly

- If new particle has a mass close to $2xM_{\mu}$ the μ -e non-universality could be do to a phase space effect rather than a different coupling
- Low energy experiments are more sensitive to that mass scale (MeV-GeV)
- Several processes under study:


 - $\eta \rightarrow \pi^o \mu^+ \mu^- \text{ vs } \pi^o e^+ e^-$

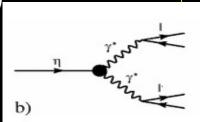
Lepton Universality Test: REDTOP



$$\eta \rightarrow \gamma \mu^{+} \mu^{-} \text{ vs } \gamma e^{+} e^{-}$$

- Preliminary studies based on $3x10^{10}$ POT $(9x10^7 \ \eta \ mesons)$ or 10^{-5} of the 1-year run statistics
- Main background: η and π $^{o} → γγ$ with ensuing gamma-conversion

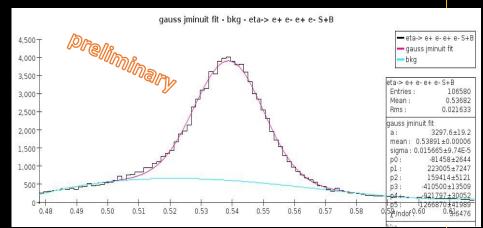
- Rejected using high-resolution energy measurement (ADRIANO2) and vertex reconstruction
- $\varepsilon_{reco} = 26.5\% \ (\eta \rightarrow \gamma e^+ e^-)$ $18.7\% \ (\eta \rightarrow \gamma \mu^+ \mu^-)$
- Errors on ratio of BR's cancel away
- Preliminary stat uncertainty:
 - \sim < 0.3% for $\eta \rightarrow \gamma e^+ e^-$ (cfr LHCb @ 4.2%)
 - \sim < 0.9% for $\eta \rightarrow \gamma \mu^+ \mu^-$ (cfr LHCb @ 1.8%)



Lepton Universality Test: REDTOP

$\eta \rightarrow \mu^{+}\mu^{-}\mu^{+}\mu^{-}$ vs $e^{+}e^{-}\mu^{+}\mu^{-}$ vs $e^{+}e^{-}e^{+}e^{-}$

- □ Theoretical calculations at the 10⁻³ precision from Kampf, Novotný, Sanchez-Puertas (PR D 97, 056010 (2018)) hard photon corrections need to be included
- Preliminary studies based on $3x10^{10}$ POT ($9x10^7$ η mesons) or 10^{-5} of the 1-year run statistics


- lacksquare Main background $\eta
 ightarrow \gamma \, e^+ \, e^- \, \eta
 ightarrow \gamma \, \mu^+ \, \mu^-$ with ensuing gamma-conversion
- Rejected using high-resolution energy measurement (ADRIANO2) and vertex reconstruction

$$\mathcal{E}_{reco} = 5.1\% (\eta \rightarrow e^{+} e^{-} e^{+} e^{-}) ,$$

$$1.0\% (\eta \rightarrow e^{+} e^{-} \mu^{+} \mu^{-})$$

$$1.2\% (\eta \rightarrow \mu^{+} \mu^{-} \mu^{+} \mu^{-})$$

Preliminary stat uncertainty: ~ 0.5%

QCD axion studies

Based on D. Alves model (PR D 103, 055018 (2021)

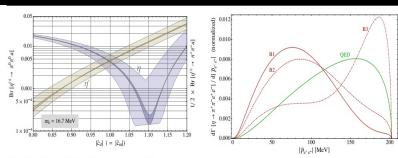
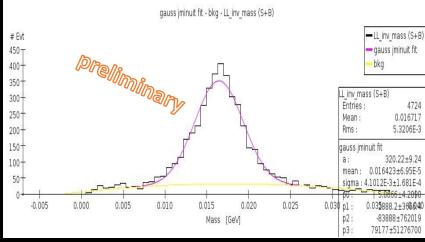
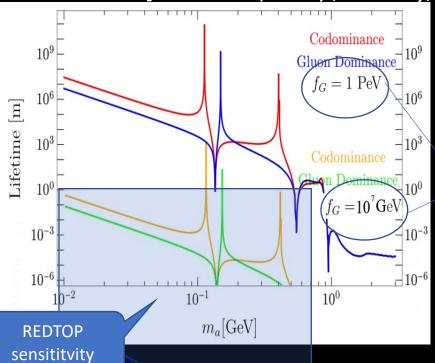



FIG. 3. Estimated branching ratios for $\eta^{(i)} \to \pi\pi a$ as a function of the scalar octet couplings to the light pseudoscalar mesons, cf. (45), (48), and (50). The bands result from varying the masses and widths of the scalar resonances, a_0 and f_0 , within their experimental uncertainties. For the dark narrow bands, their masses are fixed to $m_{a_0} = m_{f_0} = 980 \,\mathrm{MeV}$, and their widths are varied within the ranges $\Gamma_{a_0} = (40-100) \text{ MeV}$, $\Gamma_{f_0} =$ (10-200) MeV. The broader hands result from additionally vary-

FIG. 4. The differential rate for $\eta \to \pi^+\pi^- a$ as a function of $|\vec{p}_{e^+e^-}| \equiv |\vec{p}_{e^+} + \vec{p}_{e^-}| = \vec{p}_a$, for three benchmark choices of RxT parameters specified in Table I. For comparison, we also show the differential rate of the SM process $\eta \to \pi^+\pi^-e^+e^-$,

reconstructed e^+e^- vertex was within a 2.5 cm distance

Assume the axion is the 17 MeV anomaly observed in Atomki experiment (Be⁸ anomaly) Below KLOE sensitivity


The CELSIUS/WASA Collaboration observed 24 events with SM expectation of 10

- Preliminary studies based on $3x10^{10}$ POT ($9x10^7$ η mesons) or 10^{-5} of the 1-year run statistics
- Main background $\eta \to \pi^0 \pi^+ \pi^- \eta \to \gamma \pi^+ p^-$ with ensuing gamma-conversion
- Rejected using high-resolution energy measurement (ADRIANO2) and vertex reconstruction
- $\varepsilon_{\rm reco}$ = 4.8% Preliminary stat uncertainty: ~ 2.8%
- Large statistics to disentangle the six parameters of the model

More ALPs studies

Based on [Gan et al (2020), K. Kelly, S. Kumar, Z. Liu(arXiv:2011.05995)

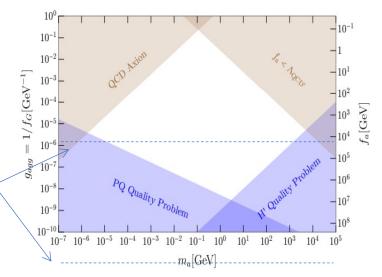
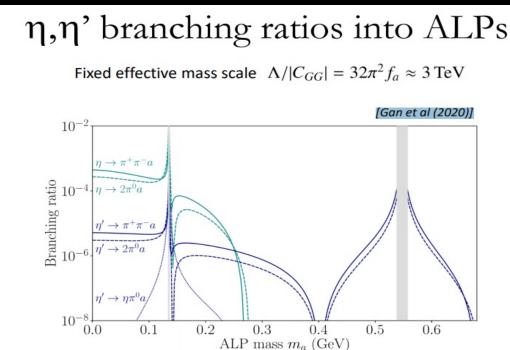


FIG. 2. Theoretical constraints on the axion parameter space for the class of models considered in this work that solve both the Strong CP and the Quality Problems, adapted from Ref. [15]. The white region is the theoretically allowed/motivated region. See the text for explanations of different labels. The parameters f_G and f_a are related by $f_G = 4\pi^2 f_a$.


- Recent work opened interesting parameter space for heavy axions
- Original work (tailored for beam dump experiments) assume $f_G = 10^{12}$ GeV
- ullet More realistic assumption for f_G indicates that a fixed target experiment is way more suited than a beam dump

More ALPs studies (cont'd)

It can be searched at REDTOP in $\eta \to \pi^+ \pi^-$ a with a $\to \gamma \gamma$ or 3π

 \blacksquare ALP- η coupling depends on a- η mixing angle

Dark sectors in η,η' decays [S. Tulin, Snowmass 2021 RF6 Kickoff meeting]

- Vertex detector and high energy resolution dual-readout calorimeter help to reject the background ($\eta \to \pi^0 \pi^+ \pi^-$ and $\eta \to \gamma \pi^+ \pi^-$)
- Expect 10^5 - 10^9 events, m_a dependent

More studies for Snowmass 2021

$\eta \rightarrow \mu^+ \mu^-$ and $\eta \rightarrow e^+ e^-$

- Based on the work by Pere Masjuan and Pablo Sanchez-Puertas [JHEP 1608, 108 (2016)]
- Ultra rare process: very sensitive to physics BSM, in particular new couplings (necessarily SU(2) breaking), or lepton flavor violating (LFV) models
- One operator inducing CP-violation not bound by EDM measurements [arXiv:1909.07491]

CP violation in $\eta \rightarrow \pi^+ \pi e^+ e^-$

- Based on the work by D. N. Gao [arXiv:hep-ph/0202002].
- Study of the angular correlation of the e^+e^- and $\pi^+\pi$ planes due to the interference between the magnetic and electric decay amplitudes

More alps studies from rare π^{o} and η decays

- Based on the work by Stefania Gori, Wolfgang Altmannshofer , Lucian Harland-Lang Joerg Jaeckel, and Michael Spannowsky, Felix Kahlhoefer. Et al.
- Uses interface between GenieHad [arXiv:1902.04878 hep-ph]

Muon polarization studies

- Independent window on CPviolation
- Require implementation of polarimetry in the ADRIANO2 calorimeter

Summary

- All meson factories: LHCb, B-factories, Daphne, J/psi factories have produced a broad spectrum of physics
- The η /η' meson is an excellent laboratory for studying rare processes and physics BSM at a lower small scale
- World-wide attention of theorists is growing and broad complementary experimental programs in different high-intensity facilities is flourishing
- **□** REDTOP goal is to produce $^{\sim}10^{13}$ untagged η mesons/year and $^{\sim}10^{11}$ η'/year in Phase-I and 10^{13} tagged mesons in Phase-II
- After PBC at CERN, new studies are ongoing to improve the sensitivity for different (tagged and untagged) running modes.

Thank you

Backup Slides

