

APA Shipping frame Design

Mariana Zimbru, DUNE Compliance Office LBNF/DUNE FDR: APA August 31 – September 2, 2021

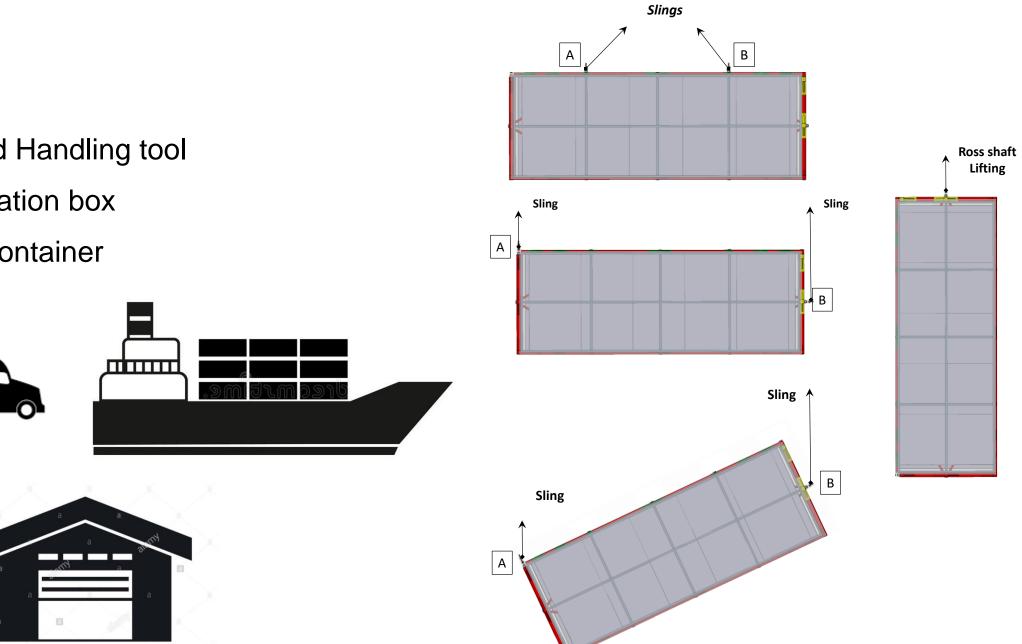
Office of Science

Outline

- Purpose
- Requirements
- Geometrical configuration
- Materials
- Loading situations
- Structural analysis
- Codes and regulations
- FEA results and verifications
- Final considerations

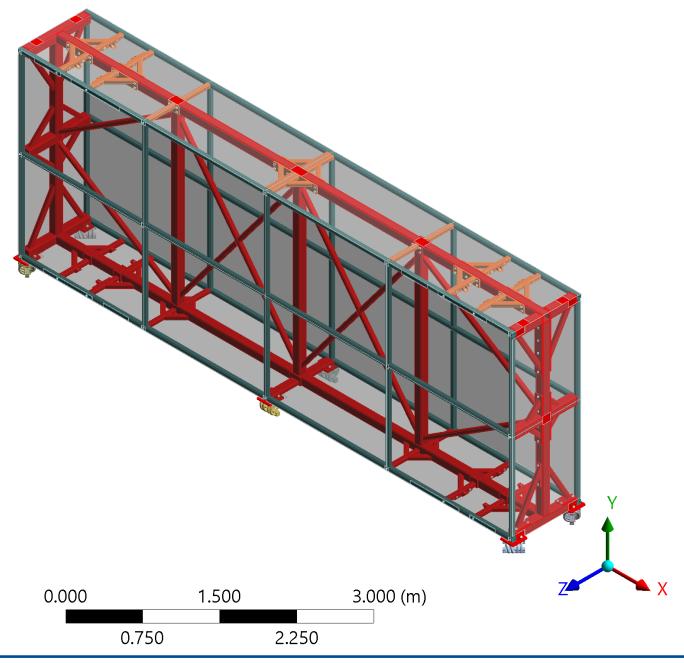
Documentation

- APA shipping frame memorandum: <u>https://edms.cern.ch/document/2330505/2</u>
- APA Shipping frame drawings: <u>https://edms.cern.ch/document/2477326/1</u>
- APA shipping frame analysis plan: <u>https://edms.cern.ch/document/2509414/2</u>
- Transportation analysis guidelines: <u>https://edms.cern.ch/document/2366873/1</u>
- APA shipping frame engineering analysis: https://edms.cern.ch/document/2607623/1
- AVMR shipping frame assembly analysis (Vibrostop): <u>https://edms.cern.ch/document/2617816/1</u>

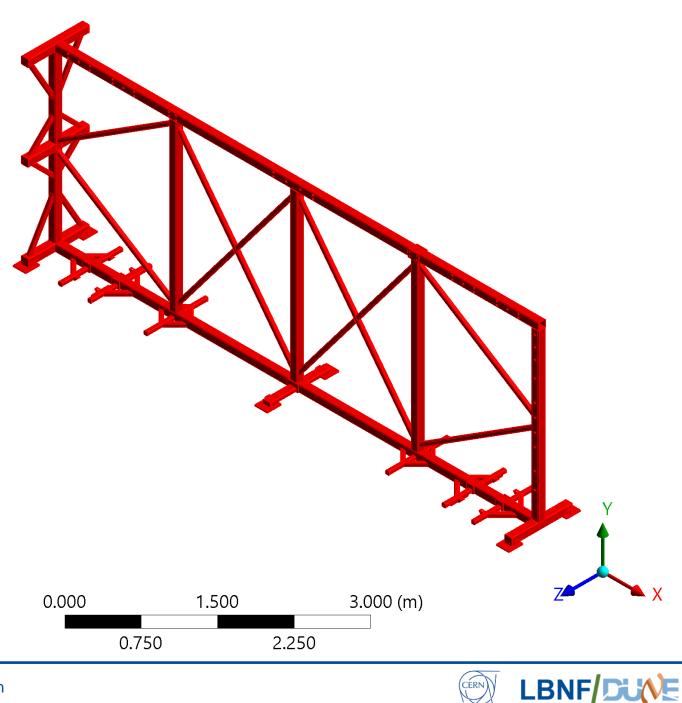


Purpose

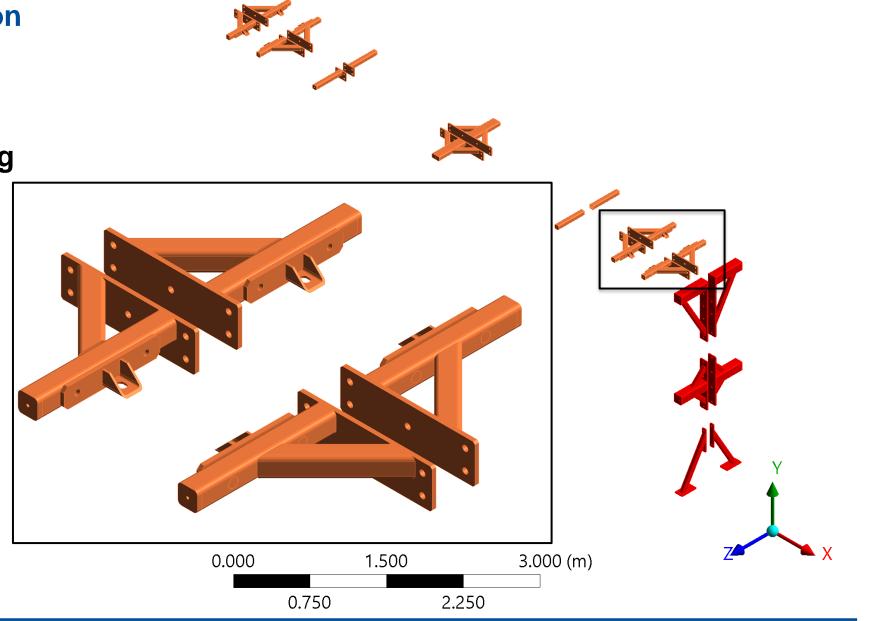
00


- Lifting and Handling tool •
- Transportation box
- Storage container

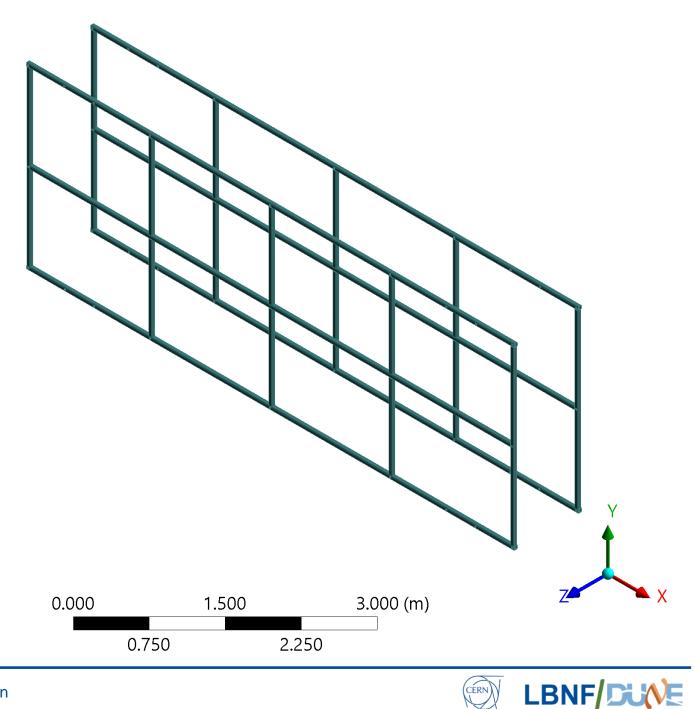
00

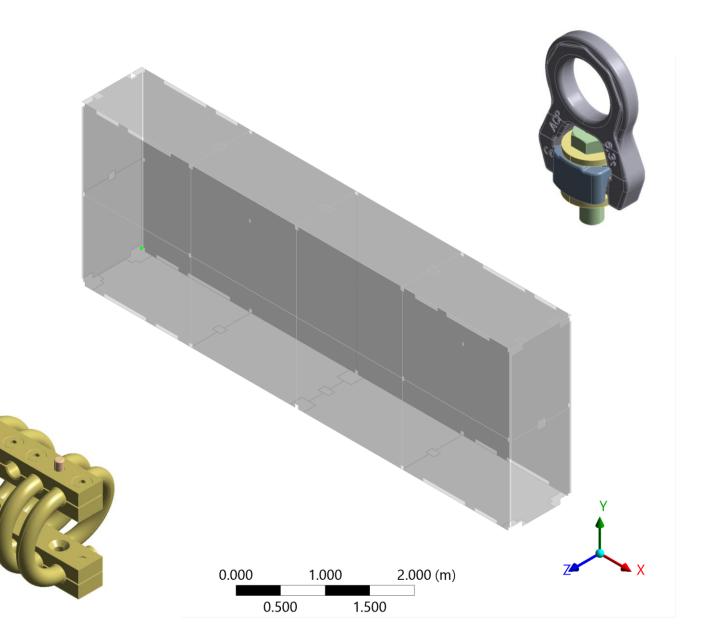


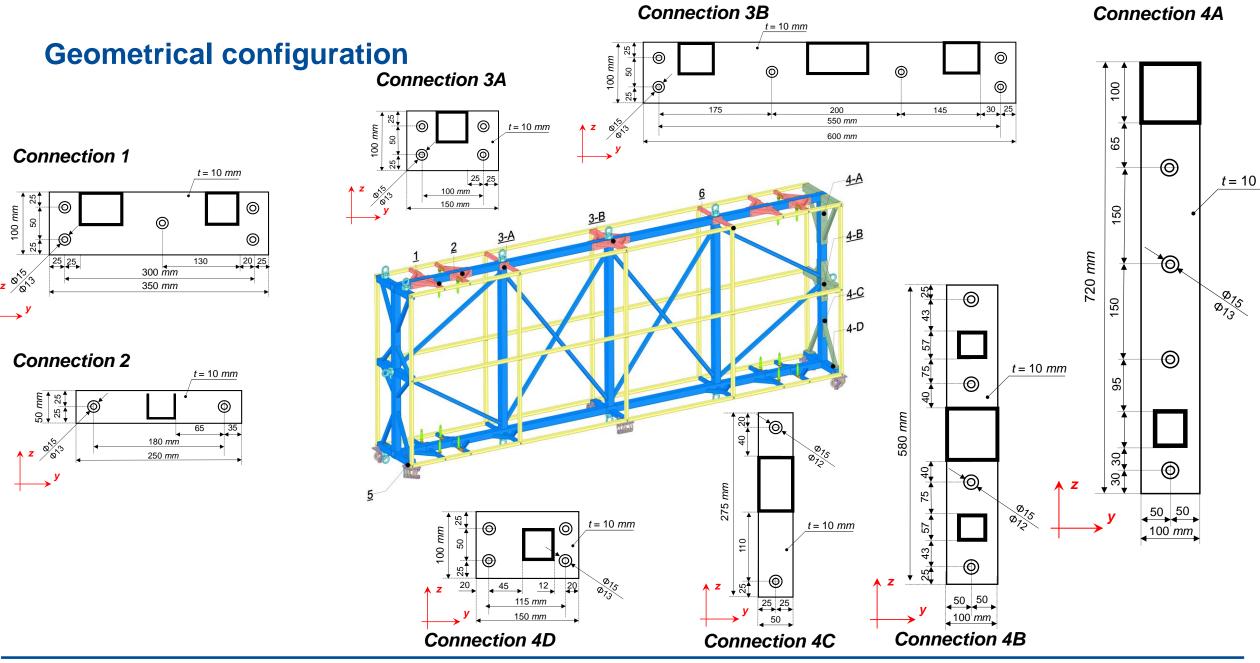
- Central frame
- Closing and supporting top/end parts
- Lateral frame
- Protective sheeting
- Absorbers
- Lifting rings


- **Central frame** •
- Closing and supporting top/end parts
- Lateral frame •
- Protective sheeting
- Absorbers
- Lifting rings •

CÉRN

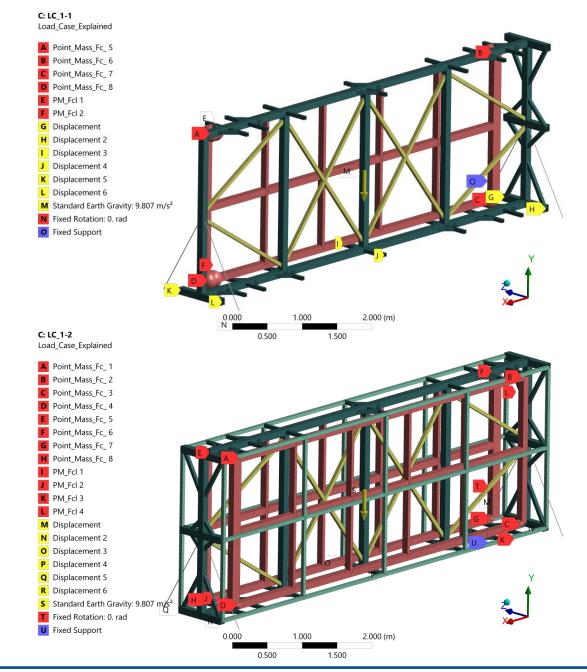

- Central frame
- Closing and supporting top/end parts
- Lateral frame
- Protective sheeting
- Absorbers
- Lifting rings




- Central frame
- Closing and supporting top/end parts
- Lateral frame
- Protective sheeting
- Absorbers
- Lifting rings

- Central frame
- Closing and supporting top/end parts
- Lateral frame
- Protective sheeting
- Absorbers
- Lifting rings

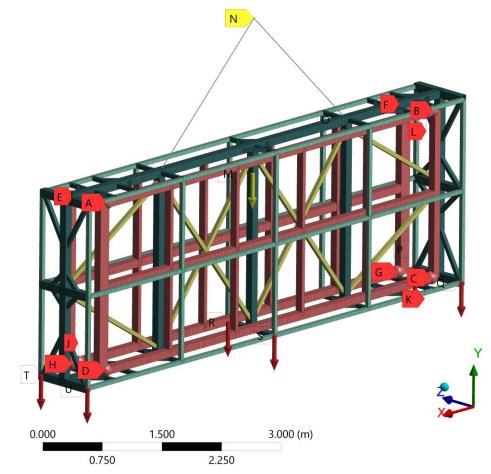
LBNF/DUNE


Materials and profiles

Rectangular hollow sections – S355 Bolts – gr.10.9 APA RHS – SS304L

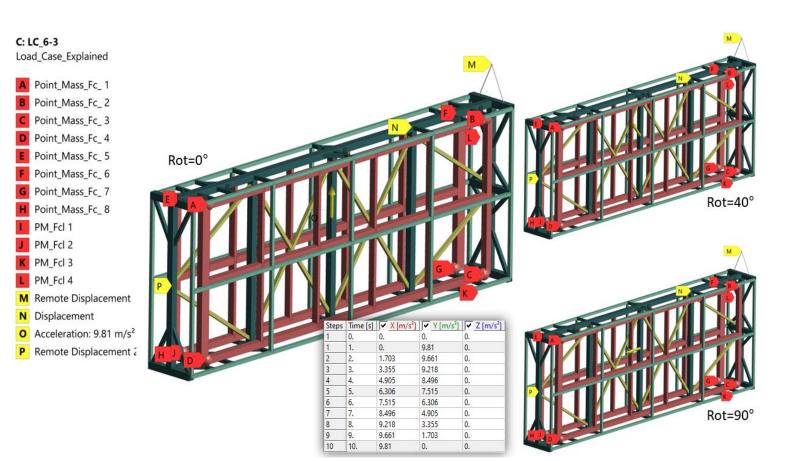
Material	Density	Poisson ratio	Young Modulus	Shear Modulus	Mean CTE	Yield strength	Tensile strength
	[kg/m³]	[-]	[GPa]	[GPa]	<i>[1/K]x</i> 10 ⁻⁶	[MPa]	[MPa]
S355	7850	0.3	210	81	12	355	510
Gr. 10.9						900	1000
SS 304L	7850	0.3	200	77	15	220	520

- *I.* ASF supported on a cart, in landscape orientation.
- *II.* ASF Lifting in landscape orientation from top central points.
- III. ASF Lifting from landscape to vertical orientation, from end lifting points.
- IV. ASF Ross shaft lowering.
- V. ASF supported on a cart, in vertical orientation.

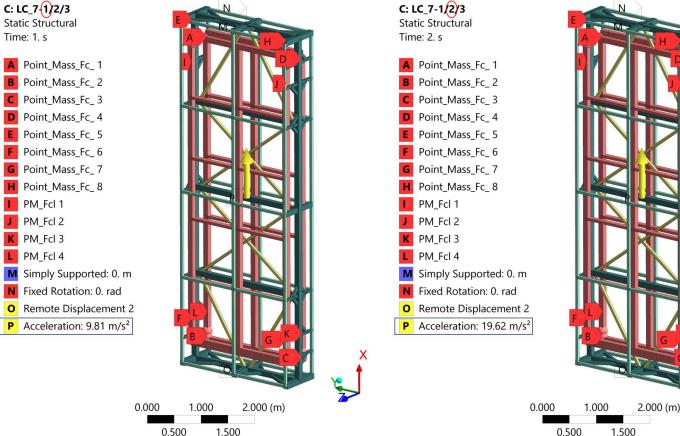


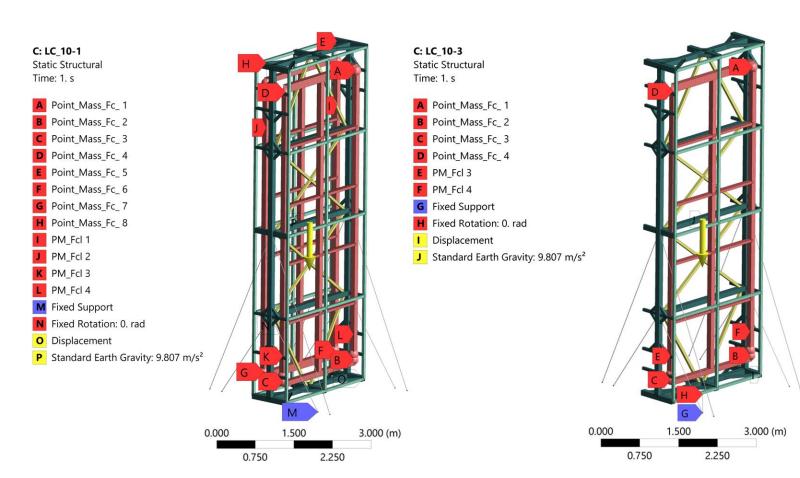
LIFTING AND QUASI-STATIC

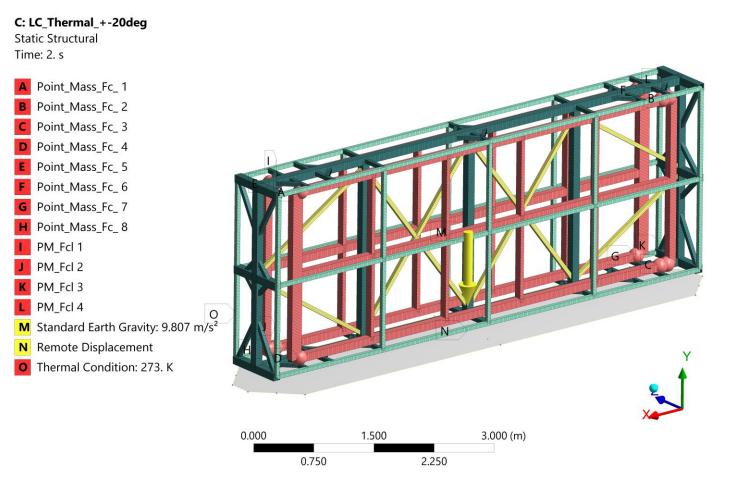
- *I.* ASF supported on a cart, in landscape orientation.
- II. ASF Lifting in landscape orientation from top central points.
- III. ASF Lifting from landscape to vertical orientation, from end lifting points.
- IV. ASF Ross shaft lowering.
- V. ASF supported on a cart, in vertical orientation.


C: LC_2 Load_Case_Explained

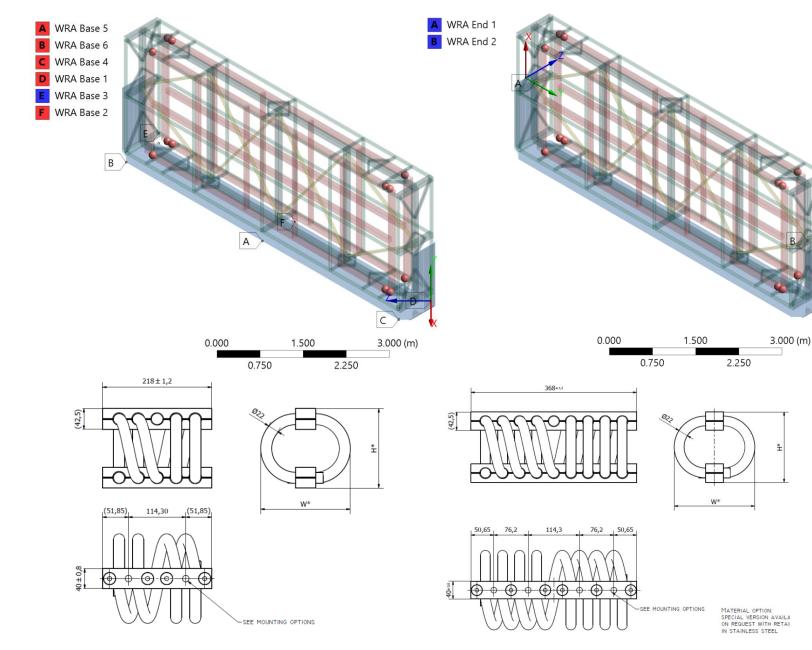
A Point_Mass_Fc_ 1 B Point_Mass_Fc_ 2 C Point_Mass_Fc_ 3 D Point_Mass_Fc_ 4 Point_Mass_Fc_ 5 Point_Mass_Fc_ 6 G Point_Mass_Fc_ 7 H Point_Mass_Fc_ 8 PM_Fcl 1 J PM_Fcl 2 K PM_Fcl 3 L PM_Fcl 4 M Standard Earth Gravity: 9.807 m/s² **N** Remote Displacement O Displacement P Base_Frame_ 1: 1000 N Q Base_Frame_ 2: 1000 N R Base_Frame_ 3: 1000 N S Base_Frame_ 4: 1000 N **T** Base_Frame_ 5: 1000 N U Base_Frame_ 6: 1000 N


- *I.* ASF supported on a cart, in landscape orientation.
- *II.* ASF Lifting in landscape orientation from top central points.
- III. ASF Lifting from landscape to vertical orientation, from end lifting points.
- IV. ASF Ross shaft lowering.
- V. ASF supported on a cart, in vertical orientation.


- ASF supported on a cart, in landscape Ι. orientation.
- 11. ASF Lifting in landscape orientation from top central points.
- III. ASF Lifting from landscape to vertical orientation, from end lifting points.
- IV. ASF Ross shaft lowering.
- V. ASF supported on a cart, in vertical orientation.

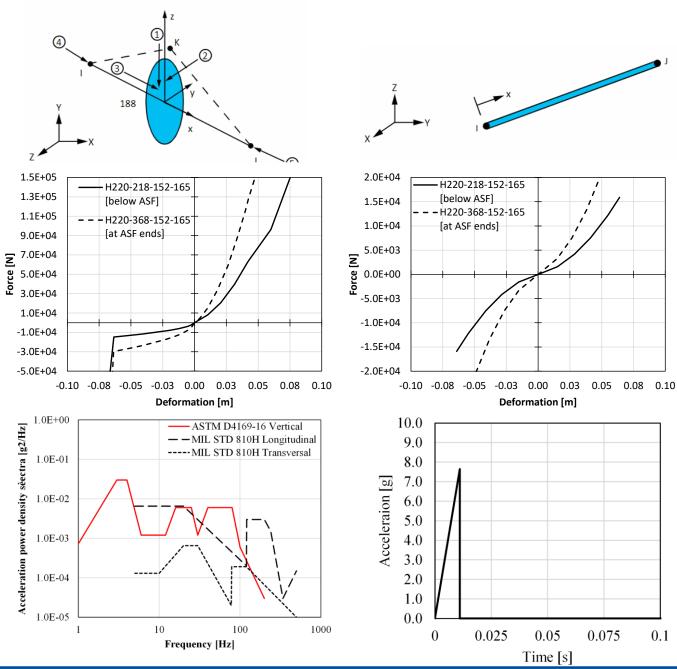

- *I.* ASF supported on a cart, in landscape orientation.
- *II.* ASF Lifting in landscape orientation from top central points.
- *III.* ASF Lifting from landscape to vertical orientation, from end lifting points.
- IV. ASF Ross shaft lowering.
- V. ASF supported on a cart, in vertical orientation.

THERMAL


VI. ASF During Transportation – thermal analysis

TRANSPORTATION AND DYNAMIC

- VII. ASF during transportation quasi-static load cases.
- VIII. ASF during transportation random vibrations
- IX. ASF during transportation sine vibrations
- X. ASF during transportation transportation shock
- XI. ASF Handling drop



Structural analysis

Modelling assumptions

- Software: Ansys
- Beam elements
- Connections modelled as joints
- APAs are included
- Nonlinear absorber behaviour
- Base structure assumed rigid
- Analysis selected function of loading:
 - Static Structural 0
 - Random Vibrations Ο
 - Harmonic Response Ο
 - Transient Ο

Ξ

Se

0.1

Design Requirements for the ASF (see previous presentation)

- To be easily handled in all lifting situations and able to withstand 1.5 x Static Load for these cases (code requirement for lifting tools).
- Meet the requirements for critical lift
- To withstand dynamic inputs (accelerations, vibration, shock) and reduce their transfer to the APAs
- To be able to withstand accidental cases (Ross shaft hoist failure, accidental drop)
- Protect from impacts and environmental effects
- Ease of access to the APA for verifications
- Ease of installation of the APA at the factory and removal inside the cavern

Codes for the ASF design

The applicable standards for design, fabrication, and quality assurance of the APA shipping frame are listed below:

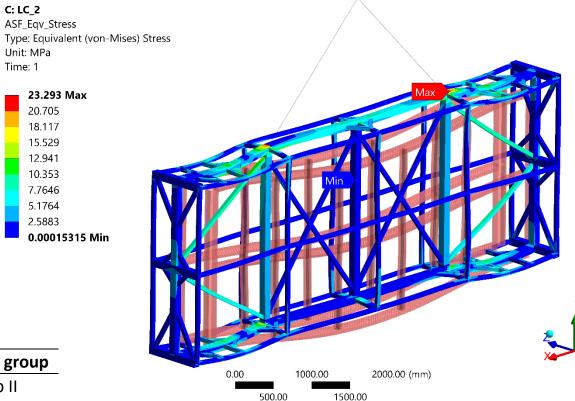
- ASME B30.20-2013 (Below-the-hook lifting devices)
- ASME BTH-1-2017 (Design of Below-the-Hook Lifting Devices)
- ANSI/AISC 360 (Specification for Structural Steel Buildings)
- Structural Welding Codes: ANSI/AWS D14.1
- ASTM D4169 Standard testing for Performance testing of shipping containers and systems
- MIL STD 810H DOD Test methods standard

All member and connection checks were carried out in accordance to ASME BTH-1 for the lifting cases and AISC360-1 for the Transportation and accidental cases

Results and Verifications – STATIC/LIFTING

Maximum Equivalent stress

	FEA Von Misses stress	Allowable stress		
Load case group	$\sigma_{equiv.max}$	F _{cr}	Utilization ratio	
	[MPa]	[MPa]	[-]	
Group I	16.8	177.5	0.09	
Group II	23.3	177.5	0.13	
Group III	21.3	177.5	0.12	
Group IVa	21.0	177.5	0.12	
Group IVb	42.1	319.5	0.13	
Group V	6.7	177.5	0.04	
Group VI	18.5	177.5	0.10	


Maximum verification utilization ratios

Maximum uitilisation ratios for member checks – design load cases (static)

Section	UR	Stress state	Load case group
2x2x3/16	0.36	Compression + Bending	Group II
4x4x3/16	0.26	Shear Z	Group IVa
4x2x3/16	0.08	Combined normal and shear stresses	Group II

Note that a UR <1 means that the verification is passed.

C: LC 2

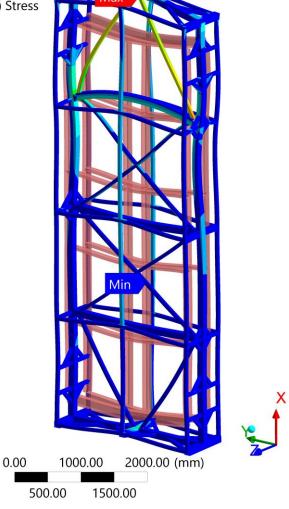
Time: 1

Results and Verifications – STATIC/LIFTING - Accidental

Maximum Equivalent stress

	FEA Von Misses stress	Allowable stress	Utilization ratio
Load case group	$\sigma_{equiv.max}$	F _{cr}	Otilization ratio
	[MPa]	[MPa]	[-]
Group I	16.8	177.5	0.09
Group II	23.3	177.5	0.13
Group III	21.3	177.5	0.12
Group IVa	21.0	177.5	0.12
Group IVb	42.1	319.5	0.13
Group V	6.7	177.5	0.04
Group VI	18.5	177.5	0.10

Maximum verification utilization ratios


		5	, ,
Section	UR	Stress state	Load case group
2x2x3/16	0.19	Tension + Bending	
4x4x3/16	0.28	Shear Z	Group IVb
4x2x3/16	0.02	Compression + Bending	

Note that a UR <1 means that the verification is passed.

C: LC_7-1/2/3

ASF_Eqv_Stress Type: Equivalent (von-Mises) Stress Unit: MPa Time: 2

42.064 Max 37.39 32.717 28.043 23.37 18.696 14.022 9.3488 4.6752 **0.0015911 Min**

Results and Verifications – STATIC/LIFTING

	Connection	M	N	Design	LC Groups	Accidental LC – Group IVk
Connections	Connection	V _{Rd}	N _{Rd}	UR	Group	UR
Maximum utilization ration		[kN]	[kN]	[-]	[-]	[-]
Maximum utilization ratios	1	38.8	24	0.13	Group III	0.17
	2	15.5	21.6	0.14	Group I	0.11
	3-A	31.1	37.9	0.03	Group II	0.01
	3-B	46.6	24	0.10	Group II	0.06
	4-A	31.1	24.7	0.03	Group III	0.02
	4-B	31.1	20.4	0.12	Group IVa	0.15
	4-C	15.5	27.9	0.06	Group II	0.01
	4-D	31.1	55.2	0.02	Group II	0.00
	5	5.2	6.8	0.48	Group V	0.10
	6	43.6		0.05	Group II	

Maximum bolted connection utilization ratios for static LCs

 V_{Rd} – shear resistance of the bolted connection

 N_{Rd} – tensile resistance of the bolted connection

	Welds maximum uitilisation ratios for static LCs							
Mold configuration	[Design LC G	roups	Accidental LC	ntal LC – Group IVb			
Weld configuration	f _{cr} [MPa]	UR	Group	f _{cr} [MPa]	UR			
Welds "4x2" to "4x4"	15.3	0.10	Group II	12.6	0.05			
Welds "4x4" to "4x4"	40.1	0.27	Group III	72.1	0.27			
Welds "2x2" to "2x2"	40.9	0.28	Group II	39.1	0.15			
Welds "2x2" to "4x4"	43.8	0.30	Group III	73.4	0.28			
Welds "2x2" angle to plate	35.7	0.24	Group I	35.8	0.13			

Note that a UR <1 means that the verification is passed.

Results and Verifications – DYNAMIC/TRANSPORTATION

Maximum Equivalent stress

Load	d case group	FEA Von Misses stress $\sigma_{equiv.max}$	Allowable stress F _{cr}	Utilization ratio
	Direction	[MPa]	[MPa]	[-]
Group VII	g _y + 0.8g _x	26.0		0.09
Group VII	$g_y + 0.8g_z$	39.1	_	0.14
	PSD _x	35.5		0.12
Group VIII	PSDy	27.1		0.09
	PSDz	53.0		0.18
	Sine 0.5g _x	41.9	320	0.15
Group IX	Sine 0.5g _y	42.9	520	0.15
	Sine 0.5g _z	53.0	_	0.18
	Shock 7.6g _x	38.5	-	0.13
Group X	Shock 7.6g _x	52.2		0.18
	Shock 7.6g _x	57.5		0.20
Group XI	Drop <i>u</i> _y = 114mm	115.6		0.40

Maximum verification utilization ratios

Section	UR	Stress state	Load case group
2x2x3/16	0.66	Compression + Bending	Group XI
4x4x3/16	0.34	Compression + Bending	Group XI
4x2x3/16	0.41	Compression + Bending	Group XI

Note that a UR <1 means that the verification is passed.

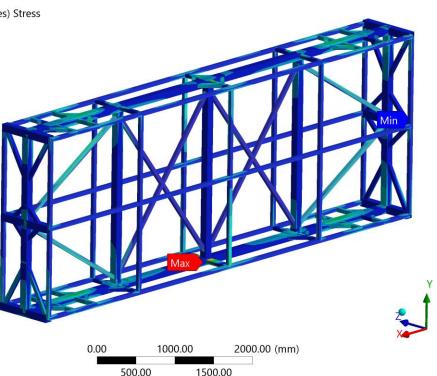

C: Transient Structural

Figure Type: Equivalent (von-Mises) Stress Unit: MPa Maximum Over Time

80.629 70.562 60.496 50.429 40.363 30.296 20.23 10.163

0.096598 Min

*It considers only the dynamic effect, not the static gravitational effect

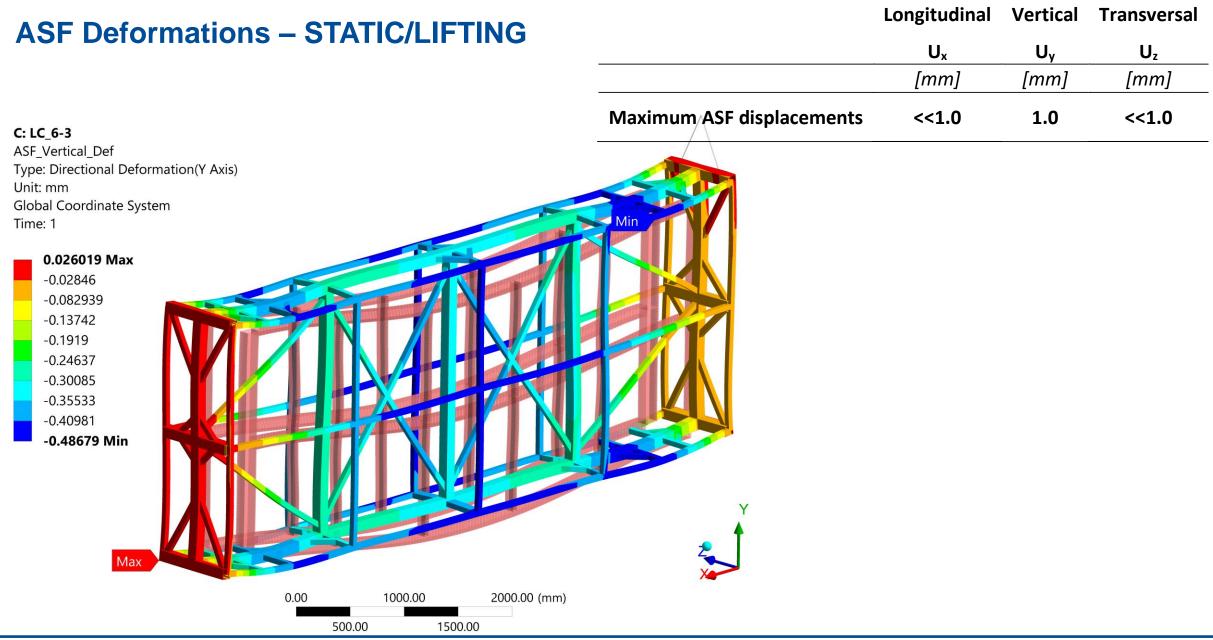
Results and Verifications – DYNAMIC/TRANSPORTATION

Connections
Maximum utilization ratios

Connection	V _{Rd}	N _{Rd}	UR	Group
	[kN]	[kN]	[-]	[-]
1	63.8	38.1	0.51	Group XI (Drop)
2	25.5	39	0.34	Group XI (Drop)
3-A	51	76.1	0.05	Group XI (Drop)
3-B	76.5	38.1	0.24	Group XI (Drop)
4-A	51	39.7	0.13	Group VII (Quasi-Static)
4-B	51	34.1	0.40	Group VII (Quasi-Static)
4-C	25.5	50.2	0.34	Group XI (Drop)
4-D	51	88.8	0.10	Group XI (Drop)
5	9	11.6	0.65	Group XI (Drop)
6	75.9		0.32	Group XI (Drop)

Maximum bolted connection utilization ratios for dynamic LCs

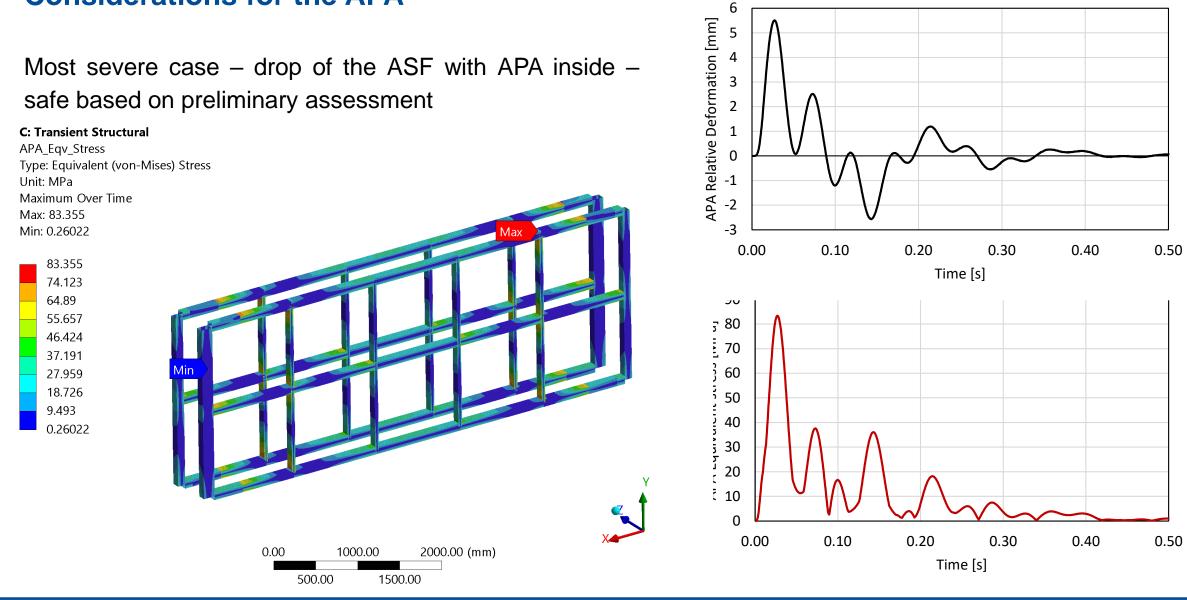
 V_{Rd} – shear resistance of the bolted connection


 N_{Rd} – tensile resistance of the bolted connection

Welds maximum uitilisation ratios for dynamic LCs

Weld configuration	f _{cr} [MPa]	UR	Group
Welds "4x2" to "4x4"	129	0.49	Group XI (Drop)
Welds "4x4" to "4x4"	119	0.45	Group XI (Drop)
Welds "2x2" to "2x2"	195	0.73	Group XI (Drop)
Welds "2x2" to "4x4"	124	0.47	Group XI (Drop)
Welds "2x2" angle to plate	165	0.62	Group XI (Drop)

Note that a UR <1 means that the verification is passed.



ASF Deformations – DYNAMIC/TRANSPORTATION

		Maximum ASF displacement		
Load case group		Longitudinal	Vertical	Transversal
		Ux	Uy	Uz
	Direction	[<i>mm</i>]	[<i>mm</i>]	[<i>mm</i>]
Group VII	$g_y + 0.8g_x$	8.9	8.1	<1.0
	g_{y} + 0.8 g_{z}	<1.0	16.7	53.8
Group VIII	PSD _x	5.3	1.1	<1.0
	PSDy	<1.0	4.4	<1.0
	PSDz	<1.0	<1.0	1
Group IX	Sine 0.5g _x	5.2	2.7	<1.0
	Sine 0.5g _y	<1.0	7.4	<1.0
	Sine 0.5g _z	<1.0	28.5	41.2
Group X	Shock 7.6g _x	9.5	1.5	<1.0
	Shock 7.6g _y	<1.0	8.4	<1.0
	Shock 7.6g _z	<1.0	5.0	32.8
Group XI	Drop $u_y = 114$ mm	<1.0	32.4	<1.0
Maximum ASF dynamic displacements		9.5	32.4	53.8

Considerations for the APA

Considerations for use

1. The analyzed boundary conditions must be replicated in reality for all cases (lifting, storage, transportation)

2. The movement of the ASF in the factory, drift and cavern should be of such nature as not to induce dynamic effects. Measures should be taken to mitigate such effects.

3. The handling of the APA Shipping Frame loaded with APA detectors must be treated as a "critical lift" (DOE-STD-1090) in all circumstances.

Conclusions

- The ASF design is deemed safe as all the member strength and stability, and connections (welded and bolted) checks are met for all LCs.
- The APAs were part of the analyzed ASF model. Based on the verifications performed, the ASF can safely hold, lift, and transport the APA detectors
- The AVMR assessment of the transportation assembly (ASF and absorbers) confirmed it meets the safety requirements for transportation.

Note: The ASF was designed and verified based on the US codes for lifting and steel structures. Another set of verifications was performed in accordance with the EU equivalent codes and very similar results were obtained.

Next steps

- An envelope study is being performed to verify the APA and shipping frame
- A prototype is being built at CERN (whcihc will be surveyed for execution tolerances) and two are being built in the UK.
- A test plan is being developed
- The CERN prototype will be loaded with old ProtoDUNE APAs, instrumented and once tested, it will be shipped to SURF

