

CERN irradiation facilities supporting collider programs and targetry technologies

M. Calviani (Systems Department, Sources Targets Interactions Group)

18th June 2021

Disclaimer

This is partial and personal view of the "irradiation" topic, seen from Targetry Systems perspective, as within the scope of the present workshop

Acknowledgments

N. Charitonidis, R. Garcia Alia, S. Rothe, J. Vollaire, S. Stegemann, A.-P. Bernardes, F.-X. Nuiry, T. Stora, M. Ferrari, D. Senajova, O. Aberle, F. Ravotti, P. Fernardez-Martinez, S. Gilardoni, A. Perillo-Marcone, R. Ximenes

Outline

- What is the role of irradiation facilities at CERN
- Irradiation facilities supporting Beam Intercepting Devices (BIDs) and Target Systems
- Irradiation facilities in support of collider technology and respective systems
- Conclusions

CERN Accelerator Complex

The CERN accelerator complex Complexe des accélérateurs du CERN

- Accelerating particles up to TeV energies requires multiple acceleration stages: LINAC, PSB/LEIR, PS, SPS, and LHC
- Each single accelerator can typically increase the particle energy by a factor
 ~30
- Only a very small fraction of the protons accelerated at CERN end up in the LHC storage ring at 7 TeV, most are used in the experimental areas of the PS (24 GeV) and SPS (450 GeV) (70% to ISOLDE, 25% n_TOF)
- lons (e.g. Xe or Pb) are also accelerated during some weeks at the end of every year

Role of irradiation facilities

- Two categories could be generally considered
- 1. Test of complex systems such as beam intercepting or protection devices
 - Testing of thermal shock resistance of absorbing block
 - Validation of integral components
 - Single pulse or long-term irradiation infrastructure
- 2. Irradiation facilities supporting equipment installed in accelerator environment and big experiments
 - Irradiation of COTS components for accelerator systems
 - Irradiation of equipment for LHC and non-LHC experiments
- Given the scope of the current Snowmass process, focus will be given on #1 – internal and external "irradiation" support is critical

Beam Interception at CERN

- Beam intercepting devices for a variety of different functions, from particle production (RIBs, neutrons, pbars, etc.) to collimators and beam absorbers/dumps
- Testing of integral or sub-component with beam is essential to validate technologies and functions

Beam Interception at CERN

Beam Interception at CERN

Test of complex systems such as beam intercepting or protection devices

- A unique, high-energy, high-intensity pulsed beam facility dedicated to targetry & accelerator components material R&D
- LHC-like proton or ions beams, with a maximum pulse intensity of 3.4x10¹³ protons / pulse can be delivered in controlled conditions and to be monitored with special instrumentation.

HiRadMat Proton Beam	
Beam Momentum	440 GeV +- 0.3%
Pulse Energy (max)	2.46 MJ
Bunch Intensity	5.0×10 ⁹ to 1.2×10 ¹¹ protons
Number of Bunches	1 to 288
Minimum Pulse Intensity	5.0×10 ⁹ protons (1bunch)
Maximum Pulse Intensity	3.5×10 ¹³ protons (288b at 1.2×10 ¹¹ ppb)
Bunch length (1σ r.m.s)	375 ps
Bunch Spacing	min. 25 ns, max 150 ns
Batch Spacing	250 ns
1 σ r.m.s. beam radius	0.5 to 4.0 mm
Total typically allocated protons/year 2	x10 ¹⁶ protons (equivalent to approx. 10 experiments year)

Experiments in HiRadMat

A unique facility to test the effects of high-intensity SINGLE pulsed beams on materials

- Targets
- Accelerator components
- Beam instrumentation or machine protection
- Highlights of experiments on various aspects have been presented e.g <u>here</u>

1 HiRadmat pulse with the maximum intensity (288 bunches, 3.5x10¹³ p/pulse) can be seen as having an instantaneous energy of :

$$P[J/pulse] = 440 \times 1.6E-10 \times 3.5E13 = 2.46 MJ/pulse$$

This "power density" in tandem with the very short pulse length (7.2 μ s) allows to test or simulate realistic energy depositions of high power beams on materials.

At the same time, only 1 pulse per ~min currently > Low average power, imposed mainly from availability and concurrence with LHC

HiRadMat Facility Layout

 A specially designed underground facility, specially prepared and equipped with mobile supports, cabling, instrumentation for high intensity pulsed beam experiments.

Examples of HRMT tests

- Integral testing of an internal dump at the end of SPS injector towards LHC
- Graphitic material inserted in a TZM backstiffener w/ TiGr5 holding plates

http://cds.cern.ch/record/2633513?ln=en

ISOLDE Facility

Contact: J. Vollaire

- Facility for RIB production at PS Booster (1.4 GeV/c)
- 2 Target stations and separators for high purity and high-resolution beams
- Hot-cell zones

CERN ISOLDE infrastructure

Railway transfe

- ISOLDE target for physics research
- MEDICIS target recycles protons that did not interact
- Railway (MONTRAC) system allows transport to class A lab. (~ 15 min)
- Offline manipulation (e.g., medical isotope collection)

GPS

- ISOLDE target for physics research
- Fixed ISIS irradiation point
- Foreseen to operate in sync. with ISOLDE operation
 (Bringing in/out with GPS target change)

CERN ISOLDE infrastructure

Example of activation studies at MEDICIS

- Irradiation of lead-bismuth eutectic targets to measure produced radionuclides (e.g. shortlived and those produced by secondaries)
 - Especially short-lived and those produced by secondaries
- Release studies from TiC-CB (carbon black)
- 11C release study from activated BN targets

Contact: S. Stegemann, T. Stora

ISOLDE Facility α - γ hot-cell

Contact: J. Vollaire

Operator Side

Material side (remote handling, waste drums...)

- Two compartment hot cell with tele manipulator
- Hot Cell #1 & # 2 operate in under pressure (#2 can operate under inert atmosphere)
- Remote handling capabilities with KUKA robot (ISOLDE target gripper system and weight/dimensions)

ISOLDE Facility α - γ hot-cell – scope of use

 Dismantling (material categorisation in view of waste elimination) and autopsy of ISOLDE targets (Hot Cell #1)

Re-oxidation of irradiated uranium carbide pills (pyrophoric risk) in view of

elimination (Hot Cell #1)

Figure 5 - Schematic of proposal oxidation set-up in Hot Cell

ISOLDE beam Dump Replacement Study

Contact: A.-P. Bernardes

- Current ISOLDE configuration dates to 1991-1992 (ISOLDE 4)
- Beam dumps were designed for a proton beam of 0.8/1 GeV. Not compatible with 2 GeV beam upgrade following PSB maximum deliverable energy

Signs of corrosion, condensation and molten material on the visible face

ISOLDE beam Dump Replacement Study

- Challenging worksite planned during 2025-2026 if
- Dose rate and radioactive management (activated earth, iron/concrete blocks and dumps)
- Not remote handling compatible

Example of buried shieding removal (not radioactive)

ISOLDE dumps buried in earth

BEAM DUMP GPS

1992

Not remote handling compatible

ISOLDE dump irradiation station possibility

An irradiation station could be integrated before the dumps

Dump

n_TOF NEAR irradiation station

Contact: A.-P. Bernardes

- CERNs owns a white neutron source based on a 20 GeV/c proton Pb spallation target
- An updated nitrogen cooled target with 2 decoupled moderators has been installed in 2021
- A shelf with 24 samples position has been installed on the target

n_TOF NEAR Mixed Field – expected dose

IRRADIATION CONDITIONS

- ✓ Neutron dose 90% (in organic materials)
- ✓ Neutrons in MeV range: dominant component
- √ ±1 MGy/y bottom shelf
- √ Satisfactory homogeneity

Total absorbed dose in the samples (FLUKA)

Slow Extraction high intensity test bench in TCC2

Contact: O. Aberle

- Beam Dump Facility Project requested the testing and validation with beam of a slowly-extracted 50 kW (350 kJ/pulse) rated heavy target made of W/TZM cladded with Ta and Ta2.5W
- This required the setup of a "test area" in the North Area Target zone TCC2)

E. Lopez Sola et al. Phys. Rev. Accel. Beams 22, 123001 (2019)

Slow Extraction high intensity test bench in TCC2

- Test area proves to be very interesting to test integral components exposed to relatively high beam power
- Fully remote handling (already during design phase)
- Dedicated water cooling (rated at ±80 kW)
- Not a "facility" but a nice addition to the suit of testing (complementary to HiRadMat)

Von Mises Equivalent stress Ta2.5W cladding

Reasonable approximation of the level of stresses in the core and cladding materials

Irradiation facilities supporting equipment installed in accelerator environment and experiments

Radiation environment in High Energy Accelerators

Contact: R. Garcia Alia

- Hadronics and electro-magnetic showers originates from the interaction of highenergy protons or ions with the different elements
- Main sources of radiation
 - Collision debris from interaction points
 - Interactions with beam intercepting objects
 - Beam-gas (residual) interaction
- Source is similar to that of atmospheric radiation: HE protons generatic hadronic (SEEs, TID, DD) and electromagnetic (TID) showers
- Mixed Field radiation environment composed of p, n, pions, electrons, gamma...

Radiation Environment in High Energy Accelerators

- When compared to atmospheric environment (avionic, ground-level):
 - Similar neutron environment, especially for shielded accelerator areas, but typically with larger fluxes (mainly SEE related)
 - Additional presence of charged hadrons and electromagnetic showers, therefore also inducing high TID levels

- Similar levels and effects than those present in trapped proton belt (i.e. high-energy protons)
- No low energy trapped protons and electrons, therefore local shielding (e.g. mm to cm range) is inefficient
- No heavy ions, therefore SEEs are mainly induced through nuclear interactions from hadrons (i.e. protons, neutrons, pions)

CHARM – CERN High Energy Accelerator Mixed Field

 Main purpose: radiation test of electronics equipment and components in a radiation environment similar to some representative radiation fields

Spectra Vs. Position

May 20, 2019

System Level Testing: Qualification of Power Converters

Y. Thurel RADECS2018

Converters successfully tested at CHARM. (From dry-test area up to irradiated test area).

Irradiation facilities for CERN experiments

Contact: F. Ravotti

IRRAD

Proton Facility

- IRRAD: radiation test of solid-state/calorimetry detector components, electronics (DD,SEE), materials for HL-LHC
- 24 GeV/c p⁺, 400 ms spills
- ±1E16 p/cm²/5 days, beam spot: 12x12 mm² FWHM
- 1 shuttle system (small samples)

- 6x room temperature
- 2x cold boxes (-25°C)
- 1x cryogenic setup (1.9K)

Irradiation facilities for CERN experiments

Contact: F. Ravotti

- GIF++: radiation (& beam performance) test of muon detector systems, electronics (TID), gas mixtures for HL-LHC
- 137Cs γ-ray source 12 TBq today, max rate ±2.5 Gy/h @0.5 m
- 2 symmetric radiation field, 37° wide angle collimators, >100 m² floor space for DUTs
- μ-beam (100 GeV, 10⁴ /spill), gas infrastructure available

Irradiation experiments support

Contact: F. Ravotti

CERN Irradiation Facilities Database

- www.cern.ch/irradiation-facilities
- CERN portal + database of worldwide facilities
- Knowledge of available external facilities important:
 - to complement in-house means (R&D, qualification, etc.)
 - to increase testing availability (shutdown periods, etc.)
- Entries maintained by the facility coordinators:
 - more than 220 entries to date!
 - automatic reminders for maintaining the information over time
- Tool developed within EU-project AIDA-2020
- Potentially of interest for the community?

- A similar tool exist for the management of irradiation experiments
 - Operational for CERN-IRRAD, being deployed at Fermilab

Future perspectives

- Future medium/long term infrastructure foreseen at CERN (or supported by CERN) will require development of BIDs or electronics equipment that will need to be exposed either to long-term irradiations or high intensity single pulse
- Amongst the projects to be considered
 - Beam Dump Facility and other Physics Beyond Colliders Initiatives at CERN (ENUBET, etc.)
 - Muon Collider Demonstrator and Muon Collider Systems Testing
 - FCC, in both the e⁺e⁻ and hh forms (both for positron sources as well as for dumps and collimators)
 - Upgrade of ISOLDE, including EPIC
- Requirements for these installations are still pending clarifications, but irradiation facilities should evolve to support these programs

Conclusions

- CERN's project and facilities operation require regular support from irradiation experiment, of different type – ranging from BIDs to electronic equipment to experimental setup
- CERN can offer a variety of different facilities, some of them "user", other serving internal needs
- International Collaboration (such as RaDIATE) is essential for information exchange and sharing across facilities

