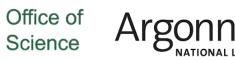
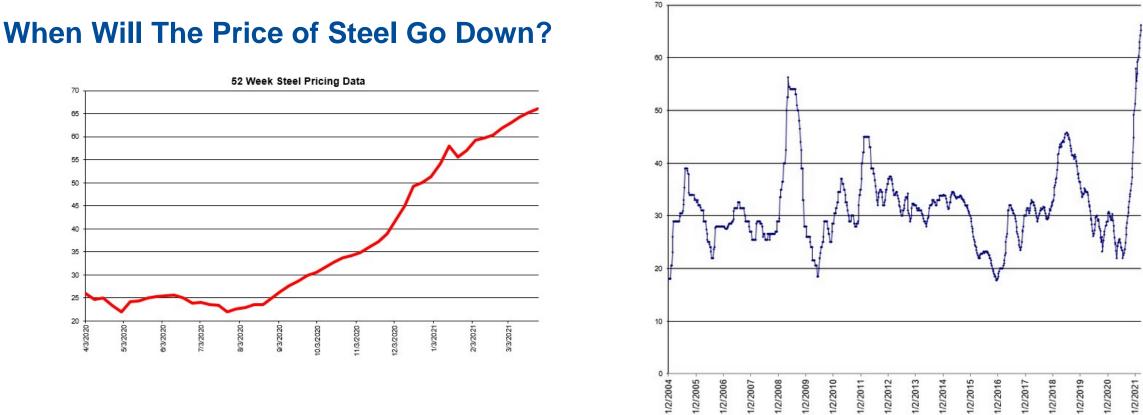
Things We Don't Know


Tom LeCompte + others *Argonne National Laboratory*



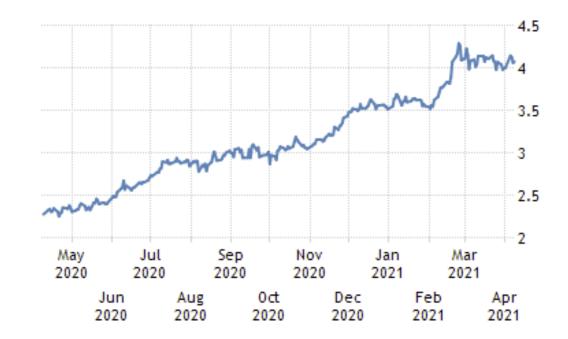
Start with the Summary

- These are a set of areas that have open issues and need work
 - I did not include the issue of how much light we need, as Faiza is working on that (and maybe we will hear from her today)
- Expect similar talks every few months
 - I want to make sure the group understands where we are
 - It's also an opportunity for people to say "I can help figure that out!" (if it's under our control)

LBNF/DUN

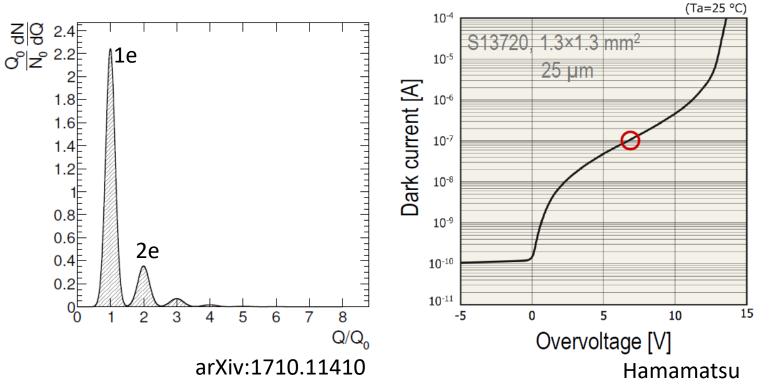
- Prices are at record highs
 - Worse, costs other than raw materials (e.g. cut to shape) are rising proportionally
- This is at least partially Covid-related
 - Supply and demand are both down. Supply is down more.

How Do We Insulate the Magnet Bus Bars?


 Luvata quoted \$200,000+ to wrap the bus bars

- "It is a little unclear what will be the final insulation material..."

- This is probably a sign that they don't want to do this, but will take our money if we insist


- Copper prices are also very high
 - Chinese demand up
 - Supply low because of Covid

How Noisy are the SiPMs?

- All the SiPMs we are looking at have noise (dark count rate) in the 0.5-1.0 MHz ballpark
 - For a 2 bucket-wide pulse, that's an "occupancy" of 2-3%.
 - "Occupancy" is for at least 1 photoelectron
 - At 2 pe, it's more like 0.4%
- We don't know the noise spectrum for any of the candidate SiPMs.
 - Much less coherent noise
 - Reminder: the front-end chip is more susceptible to coherent noise than others

Why Does it Matter?

- DAQ rates are driven by noise
 - ~600 hits per RF bucket noise; a 5 GeV muon has 100 signal hits
 - 750 kHz of noise at ~10 bytes/hit \rightarrow 140 GB/s
- Requiring a total minimum energy (1/2 mip?) to read out an event
 - The catch: we can't look at the entire detector early in the readout chain
 - A panel can look at 48 channels
 - A data concentrator can look at 5 panels (makes sense to organize them in z)
 - Downstream after we hand the event to the DAQ we can look at the whole detector
 - If this is too late, we would need to add an Event Filter computer in between the DCs and the DAQ

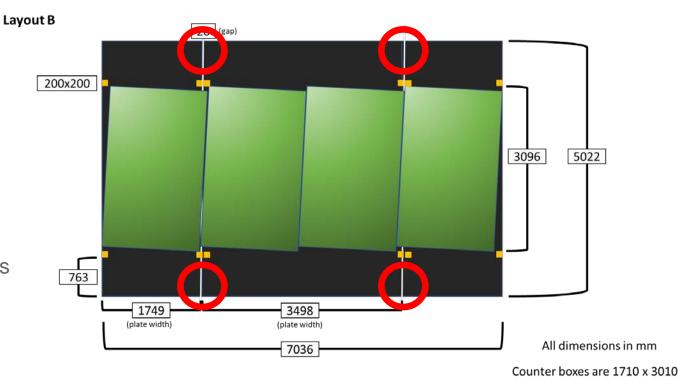
Things Are Better Then They Look

- Beam comes in ~530 bunches (588 less abort gap) 10 μs per second
 - ~700 hits @ 10 bytes @ 10 Gb/s \rightarrow 3 ms
 - I would just read out all 530 buckets (actually, 800 or so), noise and all.
- The issue is really with cosmic rays (more precisely, out-of-spill)
 - It's OK to fall behind a little during the spill
 - How much do we care about a tiny energy bias to cosmic rays?
 - How much do we care about pre-scaling cosmic rays?

(we can of course mix the two)

Electronics Naming Convention

Original	Тодау
Not needed.	Quad-counter motherboards. Takes SiPM signals and places them on an HDMI connector.
"On Panel Boards" – only board on the panel. Took SiPM output and digitizes it and sends on ribbon cables to the Data Concentrators.	Digitizes the SiPM signal, zero-suppresses it, and sends it on DisplayPort cables to the Data Concentrator. mu2e calls the equivalent a "front-end board"
"Data Concentrators" – Builds the partial event, zero-suppresses it, and sends it on to the DAQ.	Builds the partial event and sends it on to the DAQ. Also supplies power and timing to the OPB- equivalent.
	equivalent.


We could use better names than OPB and DC now.

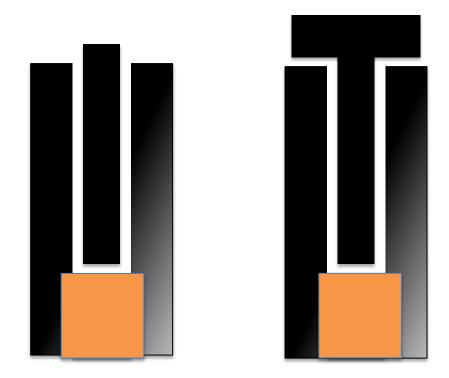
Open Question: how do we get the Main Injector RF timing into the system?

LBNF/DUNE

How Many Magnet Power Supplies Do We Need?

- The issue: the gaps between panels plays an important role in the magnetic circuit.
 - Flux path lengths are between 6200 and 17,000 mm.
 - There is 40mm of air gap
 - For μ =700, 60-80% of the reluctance comes from the gaps.
 - Tolerances in the gap width imply different currents needed to supply a uniform field. \rightarrow need multiple supplies
- How many power supplies?
 - Unless the effect is small, probably one per coil (6)
- How do we measure the field to tune it? It's in the iron.

Idea: the field is a function of the current and the reluctance. Use the relationship between reluctance and inductance to compute the RL time constant, and use the power supplies one coil at a time to determine that.


Anyone taught freshman physics lately?

Filling the Gap

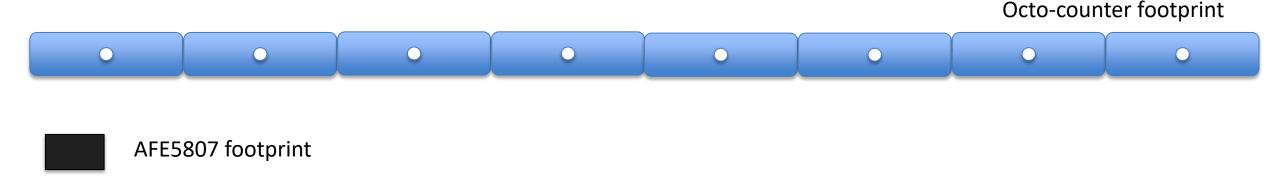
- Placing a strip of steel in the upper and lower slots will reduce the reluctance. A top piece will reduce it further (and would make it easier to install).
- This will reduce the current we need (good) but increase the relative variation (not so good).
- Our system is not so simple (the fields are coupled), so we've asked for more Ansys to better understand this.

- Lower priority than running with the current configuration to establish a baseline, and running with a model where the coil gaps are large enough to install the coils.

LBNF/DUNE

Quadcounters? Octo-counters?

- An N-counter has N scintillator strips in a unit, sharing SiPM-end mechanics and electrical connectors
- Advantages of small N
 - Higher yield/less waste in QC
 - More efficient to schedule many small tasks
- Advantages of large N
 - Fewer assembly steps
 - Fewer electrical connectors
- We don't think we can fit an HDMI connector on a 2-counter
 - A 3-counter is questionable
- HDMI has enough pins for 1-12 channels
 - USB-C has enough pins for at most 5 (smaller, but unkeyed)
- We are designing/prototyping assuming quad-counters



A single strip compared to an HDMI connector (approximately to scale)

An Intriguing Possibility

- Our front-end chip has 8 channels if we could mount it next to the SiPMs, all our data would be digital.
- Issues:
 - The footprint for the support circuitry needs to be considered
 - The AFE5807 may not be available in 2024-2025, much less in this exact packaging
 - SiPM signals need moderately long runs (true to a degree in any case, but now we have digital traffic nearby)
 - Designing such a long and skinny PCB with so many functions takes real engineering
- I think it's safe to say we don't really know how to do this today.

The Box

- The box containing the counters has not been designed
 - You can't do everything first, and other things were higher priority
- This box has many functions
 - Holds the components together
 - Provides support during panel transport and installation
 - Lift points
 - The panels need to be rotated at least once during construction
 - Protects the fragile quad- (or N-) counters
 - Provides an extra layer of light tightening
 - Provides the electronics and power connections

Impossible? Of course not. We've done this before. But there is significant work here that hasn't been done yet.

LBNF/DUNE

Summary

- These are a set of areas that have open issues and need work
 - I did not include the issue of how much light we need, as Faiza is working on that (and maybe we will hear from her today)
- Expect similar talks every few months
 - I want to make sure the group understands where we are
 - It's also an opportunity for people to say "I can help figure that out!" (if it's under our control)