Power - Digital VD-PD

W. Pellico

Digital Power/Arapuca - Assumptions

- Digital Transmitters (2/Box)
- Current - est. 75-100 ma
- Voltage - est. 5 volts
- Bias current 2 ma
- FPGA (1 for 4 Arapucas)
- Peak current 200 ma/Arapuca
- Voltage 5 volts
- Electronics
- Summing Op amp
- 30 ma
- 3-5 volts
- Clock chip - some number
- Buffer Amp Chip - fanout
- <5 ma
- 5 Volts
- SiPMs
- Bias Voltage
- 48-50 Volts
- Current (~5ua/SiPM)

Base PoF Concept: Two PoF systems One @ 48 volts - low current One @ 5 volts - higher current One @ 3.3 volts - GaAs One @ 1 volt - GaAs

The 48 V uses silicon light converters (as tested at FNAL/CERN)

The 5 volt uses GaAs converters (tested at Boeing @ below -90c)

Digital on the $\mathbf{3 0 0} \mathbf{K V}$ cathode plane
Contains 320/4 SiPM houses $=80$
Each house gets two 5 -volt power lines
Ground line is common to row or column
Fiber feedthroughs - similar cork style units
Fiber needed per house - 18-20(If higher efficiency)

ARAPUCAs on the 300 KV cathode plane
Contains 320 SiPM houses divided into sets
Sets of houses connected to the same PoF
Perhaps - two rows per PoF system (80 blocks)
Fiber feedthrough - two 12 -hole units
Arapucas are grouped into sets of 4 as base design
Each group of 4 share an electronics box

PoF (Testing Regulators)

- LTC3103 - DONE - Failed
- TPS74201RGWR -Today

- TPS74401

Cold

- IK0524SA-XP (CERN)
- 2915L18F

Issues
Some have long delivery times Each has a unique footprint
Testing only two of each Need to know loads to fully assess

Electronics Box

- Each Arapuca transmits two analog signals to the electronics box
- A summing amp combines both analog signals
- A high-speed ADC for each Arapuca
- A digital transmitter, Tx (and conditioning electronics) transmits
- A reconfiguration circuit (receives an ext. trig/pgm and loads FPGA)

Slow Control

- DC-DC converters

PoF System/Hardware

- Cathode SiPMs

- 320 ARAPUCAs
- Divided into sectors (4-6)
- 48 Volts +/- 80 mv
- 50 ma (DC) / Sector (assuming 5ua/SiPM)
- Some storage capacitance at housing units Tested power (FNAL/CERN)
Certified 48 v
Certified short-term stability
Verified power vs load

Need to verify long term viability
Test DC-DC converter to handle load variations

PoF Electronics Box

- Two Higher Current / Lower Voltage Options

1. Like Arapuca PoF - Silicon based but larger

- Testing for past five months -

2. GaAs Units: More efficient in cold -

Typical Laser Power Converter I-V Characteristics

- No electron carrier 'freeze-out'
- Devices are at least 50% efficient and often reach over 60% when tested warm.
- Lower voltage but higher current (off the shelf).
- Vendor recommends higher power units for testing

I-V Data versus Input power

Temperature Coefficients for		
Dual Junction PV Laser Power Converter		
600 mW Illumination		
I_{sc}.	-1.04E-04	$\mathrm{A}^{\circ} \mathrm{C}$
$V_{o c}$	-2.87E-03	$\mathrm{V}^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {max }}$	-6.55E-04	W/ ${ }^{\circ} \mathrm{C}$
Efficiency	-0.11	\%/ ${ }^{\circ} \mathrm{C}$ Abs
$\mathrm{V}_{\text {pmax }}$	-2.80E-03	$\mathrm{V}^{\circ} \mathrm{C}$

- Can run up to 4 Watts

Off the Shelf -testing of regulators/misc

LTC3103

Key Features:

- Input Voltage Range: 2.5 V to 15 V
- Output Voltage Range: 1.3 V to 13.8 V
- 300 mA Output Current
- Efficiency up to 90%

Applications:

- Power over Fiber (PoF)
- Remote Sensors
- Portable Products
- Battery-Operated Devices

Ultralow Quiescent Current: $1.8 \mu \mathrm{~A}$
n Synchronous Rectification: Efficiency Up to 95\%
n Wide VIN Range: 2.5 V to 15 V
n Wide VOUT Range: 0.6 V to 13.8 V

PaRT NUMBER	DESCRIPTION	COMMENTS
LTC3104	15V, 300mA Synchronous Step-Down DC/DC Converter with Ultralow Quiescent Current and 10 mA LDO	$\mathrm{V}_{\text {IN }}: 2.5 \mathrm{~V}$ to $15 \mathrm{~V}, \mathrm{~V}_{\text {OUt(MIN }}=0.6 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=2.8 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SO}}=1 \mu \mathrm{~A}$, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN-10, MSOP-10
LTC3642	45V (Transient to 60V) 50mA Synchronous Step-Down DC/DC Converter	$\mathrm{V}_{\text {IN: }}: 4.5 \mathrm{~V}$ to $45 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIM) }}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=12 \mu \mathrm{~A}, \mathrm{I}_{\text {SO }}<1 \mu \mathrm{~A}$, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN-8, MSOP-8
LTC3631	45V (Transient to 60V) 100mA Synchronous Step-Down DC/DC Converter	$V_{\text {IN: }}: 4.5 \mathrm{~V}$ to $45 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIM }}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=12 \mu \mathrm{~A}, \mathrm{I}_{\text {SO }}<1 \mu \mathrm{~A}$, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN-8, MSOP-8
LTC3632	50 V (Transient to 60V) 20mA Synchronous Step-Down DC/DC Converter	$V_{\text {IN: }} 4.5 \mathrm{~V}$ to $50 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIM) }}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=12 \mu \mathrm{~A}, \mathrm{I}_{\text {SO }}<1 \mu \mathrm{~A}$, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN-8, MSOP-8
LTC3388-1/LTC3388-3	20V, 50mA High Efficiency Nano Power Step-Down Regulators	$\mathrm{V}_{\text {IN: }}: 2.7 \mathrm{~V}$ to $20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}$ (TMIM) Fixed 1.1 V to $5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=720 \mathrm{nA}$, $\mathrm{I}_{\mathrm{SD}}=400 \mathrm{nA}, 3 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN-10, MSOP-10
LTC3108/LTC3108-1	Ulitralow Voltage Step-Up Converter and Power Managers	$\mathrm{V}_{\text {IN }}: 0.02 \mathrm{~V}$ to $1 \mathrm{~V}, \mathrm{~V}_{\text {OutMMI }}$ Fixed 2.35 V to $5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=6 \mu \mathrm{~A}$, $\mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, 3 \mathrm{~mm} \times 4 \mathrm{~mm}$ DFN-12, SSOP-16
LTC3109	Auto-Polarity, Ultralow Voltage Step-Up Converter and Power Manager	$\mathrm{V}_{\text {IN }}: 0.03 \mathrm{~V}$ to $1 \mathrm{~V}, \mathrm{~V}_{\text {OUTMMI }}$ Fixed 2.35 V to $5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=7 \mu \mathrm{~A}$, $\mathrm{I}_{\mathrm{SO}}<1 \mu \mathrm{~A}, 4 \mathrm{~mm} \times 4 \mathrm{~mm}$ QFN-20, SSOP-20
LTC4071	Li-lon/Polymer Shunt Battery Charger System with Low Battery Disconnect	Charger Plus Pack Protection in One IC Low Operating Current (550 nA), 50 mA Internal Shunt Current, Pin Selectable Float Voltages (4.0V, 4.1V, 4.2V), 8 -Lead, $2 \mathrm{~mm} \times 3 \mathrm{~mm}$, DFN and MSOP Packages
LTC4070	Li-lon/Polymer Low Current Shunt Battery Charger System	Selectable $\mathrm{V}_{\text {FLOAT }}=4.0 \mathrm{~V}, 4.1 \mathrm{~V}, 4.2 \mathrm{~V}$, Max Shunt Current $=50 \mathrm{~mA}$, $\mathrm{I}_{\mathrm{CCO}}=450 \mathrm{nA}$ to $1.04 \mathrm{~mA}, \mathrm{I}_{\text {CCOLB }}=300 \mathrm{nA}, 2 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN- 8 , MSOP-8
LTC1877	10V, 600 mA High Efficiency Synchronous Step-Down DC/DC Converter	$\mathrm{V}_{\text {IS }}: 2.65 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN }}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}, \mathrm{I}_{\text {SD }}<1 \mu \mathrm{~A}, \mathrm{MSOP}-8$
LTC3105	5V, 400mA, MPPC Step-Up Converter with 250mV Start-Up	$V_{\text {IN }}: 0.225 \mathrm{~V}$ to $5 \mathrm{~V}, \mathrm{~V}_{\text {OUTMMX }}=5.25 \mathrm{~V}, I_{0}=24 \mu \mathrm{~A}, I_{S O}=10 \mu \mathrm{~A}$, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN-10, MSOP-12

n 300 mA Output Current
n User-Selectable Automatic Burst Mode ${ }^{\circledR}$ or Forced
Continuous Operation

Digital Power Estimates

- Arapuca
- <1ma (all SiPMs)
- 48 volts
- Power per Arapuca $=48 * 1 \mathrm{ma}=.048 \mathrm{~W}$
- Op amp (two)
- 10-30 ma @5 volt
- Power = . $1 \mathrm{~W}-.3 \mathrm{~W}$
- Electronics Box
- Transmitters
- 800 mW each/4 Arapuca
- Op amp summer/DC-DC converters
- 4 op amps
- 5 V @ 10 ma *4 = . 4 W
- FPGA/4 Arapucas:2-4 W (standby - active)
- 100 MB ADCs: . 250 W / channel: 1 W/Box
- Misc (Clock, Boot hardware, Buffers - shared)
- SiPM total: 320ma@48 Volts ~100 mW • Box TOTAL = . $8 \mathrm{~W}+.4 \mathrm{~W}+1 \mathrm{~W}+4 \mathrm{~W}=6 \mathrm{~W}$
- Op amps: $320^{*} .1$ = 32 W or 96 W
- TOTAL $=100 \mathrm{~mW}+96 \mathrm{~W}=97 \mathrm{~W}$
- Electronics Box Total $=6 * 80=\sim 500 \mathrm{~W}$
- Cathode Total $=500+97+200=\sim 800 \mathrm{~W}$
- FC TOTAL = 2600 W (Shared electronics box)

Extra - Power Option

A floating 1000 watts supply floating on the 300 KV Cathode PS
300.050 kV @20 amps

Two options for reaching 350 kV
Float the 50 kV supply and use a larger isolation transformer to power
350 kV output Float the 300 kV supply at 50 kv , use a 50 kV IT but then box up the 300 kV supply

