Power - Digital

W. Pellico

Digital Power/Arapuca – Assumptions

- Digital Transmitters (2/Box) Electronics
 - Current est. 75 100 ma
 - Voltage est. **5 volts**
 - Bias current 2 ma
- FPGA (1 for 4 Arapucas)
 - Peak current 200 ma/Arapuca
 - Voltage **5 volts**

- - Summing Op amp
 - 30 ma
 - 3 5 volts
 - Clock chip some number
 - Buffer Amp Chip fanout
 - <5 ma
 - 5 Volts

- SiPMs
 - Bias Voltage
 - 48-50 Volts
 - Current (~5ua/SiPM)

Electronics Box

Clock

Slow Control

- Each Arapuca transmits two analog signals to the electronics box
- A summing amp combines both analog signals
- A high-speed ADC for each Arapuca
- A digital transmitter, Tx (and conditioning electronics) transmits
- A reconfiguration circuit (receives an ext. trig/pgm and loads FPGA)
- DC-DC converters

PoF System/Hardware

Cathode SiPMs

- 320 ARAPUCAs
- Divided into sectors (4-6)
- 48 Volts +/- 80 mv
- 50 ma (DC) / Sector (assuming 5ua/SiPM)
- Some storage capacitance at housing units Tested power (FNAL/CERN)

Certified 48 v

Certified short-term stability Verified power vs load

Need to verify long term viability

Test DC-DC converter to handle load variations

PoF Electronics Box

- Two Higher Current / Lower Voltage Options
- 1. Like Arapuca PoF Silicon based but larger
 - Testing for past five months -
- 2. GaAs Units: More efficient in cold –
- No electron carrier 'freeze-out'
- Devices are at least 50% efficient and often reach over 60% when tested warm.
- Lower voltage but higher current (off the shelf).
 - Vendor recommends higher power units for testing
 - Can run up to 4 Watts

Temperature Coefficients for Dual Junction PV Laser Power Converter 600mW Illumination			
V _{oc}	-2.87E-03	V/°C	
P _{max}	-6.55E-04	W/ºC	
Efficiency	-0.11	%/°C Abs	
V _{pmax}	-2.80E-03	V/°C	

Off the Shelf –testing of regulators/misc

LTC3103

Key Features:

- Input Voltage Range: 2.5V to 15V
- Output Voltage Range: 1.3V to 13.8V
- 300mA Output Current
- Efficiency up to 90%

Applications:

- Power over Fiber (PoF)
- Remote Sensors
- Portable Products
- Battery-Operated Devices

Ultralow Quiescent Current: 1.8µA n Synchronous Rectification: Efficiency Up to 95% n Wide VIN Range: 2.5V to 15V n Wide VOUT Range: 0.6V to 13.8V n 300mA Output Current n User-Selectable Automatic Burst Mode® or Forced Continuous Operation

PART NUMBER	DESCRIPTION	COMMENTS
LTC3104	15V, 300mA Synchronous Step-Down DC/DC Converter with Ultralow Quiescent Current and 10mA LDO	V_{IN} : 2.5V to 15V, $V_{OUT(MIN)}$ = 0.6V, I_{Q} = 2.8 μ A, I_{SD} = 1 μ A, 3mm \times 3mm DFN-10, MSOP-10
LTC3642	45V (Transient to 60V) 50mA Synchronous Step-Down DC/DC Converter	$V_{IN}{:}$ 4.5V to 45V, $V_{OUT(MIN)}$ = 0.8V, I_{Q} = 12µA, I_{SD} < 1µA, 3mm \times 3mm DFN-8, MSOP-8
LTC3631	45V (Transient to 60V) 100mA Synchronous Step-Down DC/DC Converter	$V_{IN}{:}$ 4.5V to 45V, $V_{OUT(MIN)}$ = 0.8V, I_Q = 12µA, I_{SD} < 1µA, 3mm \times 3mm DFN-8, MSOP-8
LTC3632	50V (Transient to 60V) 20mA Synchronous Step-Down DC/DC Converter	$V_{IN}{:}$ 4.5V to 50V, $V_{OUT(MIN)}$ = 0.8V, I_Q = 12µA, I_{SD} < 1µA, 3mm \times 3mm DFN-8, MSOP-8
LTC3388-1/LTC3388-3	20V, 50mA High Efficiency Nano Power Step-Down Regulators	$V_{IN}{:}~2.7V$ to 20V, $V_{OUT(MIN)}$ Fixed 1.1V to 5.5V, I_Q = 720nA, I_{SD} = 400nA, 3mm \times 3mm DFN-10, MSOP-10
LTC3108/LTC3108-1	Ultralow Voltage Step-Up Converter and Power Managers	$V_{IN}{:}$ 0.02V to 1V, $V_{OUT(MIN)}$ Fixed 2.35V to 5V, I_Q = 6µA, I_{SD} < 1µA, 3mm \times 4mm DFN-12, SSOP-16
LTC3109	Auto-Polarity, Ultralow Voltage Step-Up Converter and Power Manager	V_{IN} : 0.03V to 1V, $V_{OUT(MIN)}$ Fixed 2.35V to 5V, I_Q = 7µA, I_{SD} < 1µA, 4mm \times 4mm QFN-20, SSOP-20
LTC4071	Li-Ion/Polymer Shunt Battery Charger System with Low Battery Disconnect	Charger Plus Pack Protection in One IC Low Operating Current (550nA), 50mA Internal Shunt Current, Pin Selectable Float Voltages (4.0V, 4.1V, 4.2V), 8-Lead, 2mm \times 3mm, DFN and MSOP Packages
LTC4070	Li-Ion/Polymer Low Current Shunt Battery Charger System	Selectable V _{FLOAT} = 4.0V, 4.1V, 4.2V, Max Shunt Current = 50mA, I_{CCQ} = 450nA to 1.04mA, I_{CCQLB} = 300nA, 2mm \times 3mm DFN-8, MSOP-8
LTC1877	10V, 600mA High Efficiency Synchronous Step-Down DC/DC Converter	$V_{IN}{:}~2.65V$ to 10V, $V_{OUT(MIN)}$ = 0.8V, I_Q = 10µA, I_{SD} < 1µA, MSOP-8
LTC3105	5V, 400mA, MPPC Step-Up Converter with 250mV Start-Up	$V_{IN}{:}$ 0.225V to 5V, $V_{OUT(MAX)}$ = 5.25V, I_{Q} = 24µA, I_{SD} = 10µA, 3mm \times 3mm DFN-10, MSOP-12

Digital Power Estimates

• Electronics Box

- Transmitters
 - 800 mW each/4 Arapuca
- Op amp summer/DC-DC converters
 - 4 op amps
 - 5 V @ 10 ma *4 = .4 W
- FPGA/4 Arapucas:2- 4 W (standby active)
- 100 MB ADCs: .250 W / channel: 1 W/Box
- *Misc* (Clock, Boot hardware, Buffers shared)
- SiPM total: 320ma@48 Volts ~100 mW Box TOTAL = .8 W+ .4W + 1 W + 4 W = 6 W
- Op amps: 320* .1 = **32 W** or **96 W**
- TOTAL = 100mW + 96 W = 97 W
- Electronics Box Total = 6*80 = ~ 500 W
- Cathode Total = 500 + 97 + 200 = ~800 W
- FC TOTAL = 2600 W (Shared electronics box)

Arapuca

- <1ma (all SiPMs)
- 48 volts
 - Power per Arapuca = 48*1ma=.048W
- Op amp (two)
 - 10 30 ma @5 volt
 - Power = .1 W .3 W

Extra – Power Option

A floating 1000 watts supply floating on the 300 KV Cathode PS

