AC-LGAD Feb2021 Testbeam

Si Xie

California Institute of Technology & FNAL

??? 03/30/2021

Noise

Baseline RMS peaked at 2mV – checked that each channel (1-6 for BNL2020 sensor) all have the same baseline RMS

• The DC guard ring (ch0) had baseline RMS = 2.6mV

Si Xie

Langaus fits

To make amplitude vs X plots, we take the 3D histogram (amp/X/Y), project to 2D (amp/X), and then take slices in X. Then we fit the amp histogram in each slice with a langaus, in the range (histMean – histRMS , histMean + 3*histRMS)

Seems to work pretty well in majority of cases

Amplitude vs X

Looks pretty good, but the noise presents a baseline at around the 10mV threshold

3

Amplitude vs X

We're zero-suppressing the noise floor at about 18mV

Amplitude vs X

We do see indication of the wiggles in between the strips

5

Amplitude Fraction

Looks pretty good

Efficiency (10mV Threshold)

Si Xie

Efficiency (30mV Threshold)

Caltech

8

Cluster Size

200 Cluster Size Cluster Size 6 6 180 5 5 160 140 4 120 3 100 3 800 2 2 600 400 200 0 0 0 0.8 0.8 0 0 0.1 0.2 0.3 0.5 0.6 0.7 0.1 0.2 0.3 0.5 0.6 0.7 0.4 0.4 X [mm] X [mm]

30mV threshold on primary strip, 10mV signal on secondary strips

clusterSize_vs_x

50mV threshold on primary strip, 20mV signal on secondary strips

clusterSize_vs_x

These are plots we need

We need Efficiency for primary threshold (max channel), and efficiency for secondary threshold (all the other channels)

Si Xie

10

These are plots we need

Should this be done with the landau peak at each X position, or should this be done event-by-event?

Backups

12