ACTS Tracking For Muon Collider

Karol Krizka
on behalf of the Muon Collider Detector and Physics Group
April 20, 2021

APS April Meeting

Current Tracking Implementation

More Information:

- Designed for the $\mathrm{e}^{+} \mathrm{e}^{-}$environment
- Inherited as part of the CLIC software framework
- Detector overview from Simone
- Tracking overview from Massimo
- Implements conformal tracking (1908.00256)
- Transform circular tracks into straight lines using conformal map
- Use cellular automata to look for lines, allowing for deviations
- Problem: $\mu^{+} \mu^{\text {- collider is much busier due to Beam Induced Bkg }}$
- Heavy pre-filtering of hits is necessary for conformal tracking to work

A Common Tracking Software

ACTS is a generic library for track fitting at collider experiments.

- Dedicated team working on advancing tracking algorithms
- Tracking is hard!
- Allows us explore alternate algorithms
- Triplet-based seeding optimized for high multiplicity environments
- Code optimization come for free
- Also explores modern computing architectures (ie: CUDA)

HOWTO: Tracking

1)Pattern recognition

- Create collection of hits corresponding to track candidates
- ilcSoft: Conformal tracking
- ACTS: Triplet-based seeding + Combination Kalman Filter
2)Track fit
- Kalman Filter to obtain track parameters
- Material description of detector required
- Separate implementations ilcSoft and ACTS

Following studies reconstruct a single muon with $p_{T} \in[0.5,10] \mathrm{GeV}$.

Truth Tracking

Validates detector description in ACTS.

Pattern Recognition

- Use hits associated to MC particle (100\% efficiency)
- Same code for ilcSoft and ACTS

Track Fit

- Kalman Filter, but ACTS vs ilcSoft implementation

Fit Library Execution Time ACTS $\quad 0.5 \mathrm{~ms} / \mathrm{evt}$ ilcSoft $\quad 100 \mathrm{~ms} / \mathrm{evt}$

Combinatorial Kalman Filter

1)Start with an estimate of track parameters

- ie: from seeding stage
2)Propagate track to next layer
3)Look for compatible hits
4)Update track with new hit
- Multiple compatible hits \rightarrow create multiple tracks
5)Repeat steps 2)-5) with all track parameters until last layer
6)Refit all resulting tracks

Truth CKF Tracking

Seeding (the truth part)

- Use MC particle kinematics

Track Fit

- Combinatorial Kalman Filter in ACTS

Overlap Removal

Fit Library Execution Time

Conformal	$120 \mathrm{~ms} / \mathrm{evt}$
ACTS	$0.5 \mathrm{~ms} / \mathrm{evt}$

BIB + ACTS $5 \mathrm{~s} / \mathrm{evt}$

- Group by tracks sharing 50% of the hits, pick one with most (or highest x^{2})

021

Triplet Seeding

1)Choose N layers for seeding

- $N=4$ in our case
2)Form seeds containing three hits
- All possible combinations in N layers
3)Remove bad seeds
- Based on compatibility with helix
4)Remove overlap between seeds

- Based on middle hit in seed
5)Use estimated track parameters as input to CKF

Track Seeding

- Using only inner part of the Vertex doubles
- Prevents redundant "too close together" combinations
- ~350k seeds per event
- $200 \mathrm{~ms}^{*}$ / seed $\times 350 \mathrm{k}$ seeds $/$ event $=\sim 20$ hours $/$ evt
- Compare with 1 week / evt in conformal tracking
* CKF on "wrong" seed is faster than on a "true" seed.

	Combinations
All Triplets	$700 B$
Seeds	2000

Towards Seeded CKF

- Need to reduce number of seeds by at least x10
- Reduce hits via cluster shape analysis
- Tighter seed "helix compatibility" requirements
- Consistent timing of hits within a triplet
- Consistent hits within doublet layers
- Need to recover seed efficiency at low p_{T}
- Optimization of seed finding configuration

Conclusions

- Current baseline for tracking is conformal tracking
- Found to be sub-optimal in the $\mu+\mu$ - environment
- Tried to use algorithms from the LHC experiments
- Triplet-seeding + combinatorial kalman filter
- Implemented using the ACTS library
- Out-of-the-box: BIB is too much even for triplet seeding
- O(100k) seeds $\rightarrow 1$ day / per event
- Still a lot existing, but unused, handles
- ACTS implementation of common algorithms is faster

BACKUP

Context

- Part of Muon Collider Symposium at APS, 10+2 talk
- At the very end, but mostly theory talks in my session

Beam Induced Background (BIB)

- Muon decay products from the beam striking the detector
- Somewhat shielded with "nozzle", but multiplicity still large
- Precise timing in detector will be important

Tracker

- Vertex is made up of doublet Si layers
- $20 \times 20 \mu \mathrm{~m}$ pixels, 50 ps time resolution
- Remainder of tracker is single layer Si
- $50 \times 50 \mu \mathrm{~m}$ pixels, 100 ps time resolution

Material Validation

そ

Add notes about importing MCC geometry into ACTS.

Hit Multiplicity

More Truth CKF

BIB Timing

SimTrackerHit (no smearing, usually 50 ps)

- Based on SimTrackerHit (no smearing)
- Current default is 50 ps time resolution
- Does not include cuts from Overlay processor

BIB Timing

SimTrackerHit (no smearing, usually 50 ps)

BIB Distribution

BIB, Simulated Hits

BIB, Simulated Hits

Single Muon, Simulated Hits

Single Muon, Simulated Hits

Optimizing Seeding Settings

deltaRMin: 5 mm to remove same layer deltaRMax: 80 mm

collisionRegionMax/Min: 75 mm

Bunch length: 5 mm to 10 mm Maybe try 30 mm ?

Need to keep collisionRegion cuts loose to allow for displaced tracks

Optimizing Seeding Settings

deltaRMax: use 80 for both

Seed Groups (Cfg 0)

- ACTS looks for seeds in overlapping groups (binning)
- Middle point is binned in z (2) and ϕ (72)
- Top/Bottom points are binned more coarsely (and overlap) in ϕ only
- Top/Bottom bins seem to be identical
- How is the size of top/bottom bins set?

Combinations in Each Group (with BIB)

	Config 0	Config 1
Top	16278	25536
Middle	2745	4227
Bottom	16278	25536
Comb	700 B	3 T
Rd Comb	800 M	1.1 B
Seeds	2000	2000

1) O (trillion) combinations in each group
2) O (1 billion) possible seeds after initial geometry cuts
3) O (1000) final seeds after helix estimate and overlap removal

- This is the slowest step

Seeding Layers

Seed 1: Skip high occupancy inner layer

- Using only inner part of the Vertex doubles
- Prevents redundant "too close together" combinations
- Future: Reduce hits with doublet requirements in double layer?
- Seed 1 reduces combinations by avoiding innermost layer
- Keeps inner endcap for coverage, occupancy high only at small R

BIB Distribution

Second color is number of hits after timing cuts.

Found Seeds in Full BIB

- Assume hit in all 4 layers

- 3 choose $4=4$
- Missing seeds at low p_{T}
- Same efficiency in both

