APS April Meeting: Muon Collider Symposium

WIMPs at High Energy Muon Colliders

Zhen Liu University of Minnesota 04/17/2021

WIMP Dark Matter

Compelling, simple, predictive explanation for thermal, cold dark matter

There is a scale...

Our Approach: work on the "nightmare" scenario

Consider the following "Minimal Dark Matter"*:

$egin{aligned} \operatorname{Model} \ (\operatorname{color}, n, Y) \end{aligned}$		Therm. target
(1,2,1/2)	Dirac	1.1 TeV
(1,3,0)	Majorana	2.8 TeV
$(1,\!3,\!\epsilon)$	Dirac	2.0 TeV
(1,5,0)	Majorana	14 TeV
$(1,\!5,\!\epsilon)$	Dirac	6.6 TeV
(1,7,0)	Majorana	23 TeV
$(1,7,\epsilon)$	Dirac	16 TeV

"Nightmare":

- High thermal targets
 - 23 TeV for 7-plet Majarona
- Minimal signatures
 - Only missing energy (details next)

Additional considerations:

- Doublet → "Higgsino"
- Triplet → "Wino"
- Use "epsilon" notation to indicate Dirac case
- Even-plet requires non-zero Y (and additional splitting to suppress direct detection)
- Perturbative Unitarity
- Summonfeld and bound-state effect

$$<\sigma_{\chi \overline{\chi} \to VV} v> \simeq \frac{g_2^4 n^4 + 16 Y^4 g_1^4 + 8 g_2^2 g_1^2 Y^2 n^2}{64 \pi M_{\chi}^2 g_{\chi}}$$

Basic Pheno Considerations

"non-trivial" to consider MuC

- Minimal signature
 - Mass splitting O(few hundred MeV)
 - Decay products soft
 - Transition between states fast (<mm for most of the cases)
- Missing ET (at LHC)→Missing Mass (at MuC)

$$m_{\text{missing}}^2 \equiv (p_{\mu^+} + p_{\mu^-} - \sum_i p_i^{\text{obs}})^2$$

$$\Delta m_{Q,Q'} \equiv m_Q - m_{Q'} \simeq (Q - Q') \left(Q + Q' + \frac{2Y}{\cos \theta_W} \right) \delta m$$

$$\delta m = \frac{g^2}{4\pi} m_W \sin^2 \frac{\theta_W}{2} \approx 160 - 170 \text{ MeV}$$

$$\kappa_W = \frac{2}{(T - Q + Y)(T + Q - Y + 1)}$$

Basic Pheno Considerations

"non-trivial" to consider muon collider reaches

- Minimal signature
 - Mass splitting O(few hundred MeV)
 - Decay products soft
 - Transition between states fast (<mm for most of the cases)
- Missing ET (at LHC)→Missing Mass (at MuC)
- The interplay between different channels:
 - DY-type dominance but large background
 - VBF-type log-growth but limited available energy
- Photon initial state process important
 - Needs to use photon PDF or Weizsacker-Williams approximation
 - Hacked Madgraph to implement
 - Additional divergences often-appear
- Beam induced background (BIB)
 - Affects detector coverage
 - Affects photon, muon threshold
 - Affects disappearing track considerations

Missing Mass signature:

- Simple and inclusive (hence also most conservative)
- Mono-photon
- VBF-dimuon
- Mono-muon

Disappearing track signature:

- Exclusive but challenging
- Most useful for Wino and Higgsinos
- Great potential

 $\sqrt{s} = 3$, 6, 10, 14, 30 and 100 TeV $\mathcal{L} = 1$, 4, 10, 20, 90, and 1000 ab⁻¹

04/17/2021

Unique Mono-Muon Channel

Apparent "Charge Violation" channel

(very different from the LHC)

Signature: Energetic mono-muon

Muon pairs → muon + missing mass

One charge is missed due to the soft (non-reconstructable) decays of the charged states

Unique and powerful channel

Unique Mono-Muon Channel

Complex background compositions:

from missing a SM particles via various mechanisms

WIMPs@HE-MuC

Collinear emissions, missing final state muons, properly calculated using photon PDF

Also includes dominant 2->2 processes with one of them decays forward

$$10^{\circ} < \theta_{\mu^{-}} < 90^{\circ}, \quad 90^{\circ} < \theta_{\mu^{+}} < 170^{\circ}$$

 $E_{\mu^{\pm}} > 0.71, \ 1.4, \ 2.3, \ 3.2, \ 6.9, \ 22.6 \ {\rm TeV}, \quad {\rm for} \ \sqrt{s} = 3, \ 6, \ 10, \ 14, \ 30, \ 100 \ {\rm TeV}$ APS April Meeting Zhen Liu 04/17/2021 7

Summary (by channel)

- Mono-photon powerful for high n-plets
- Mono-muon uniquely powerful low multiplets (Wino and Higgsinos)
- VBF dimuon large room to improve (we conservatively assumed |\eta mu|<2.5, losing lots of signals)

Disappearing Tracks: next to minimal signatures

- Only useful for searches using charge 1 states
- Still, all higher charged states will cascade back to charge 1 states promptly
- Use all the production rates of charged states
- Mono-photon+disappearing tracks
- Beam Induced Background

Summary (by channel)

- Mono-photon powerful for high n-plets
- Mono-muon uniquely powerful low multiplets (Wino and Higgsinos)
- VBF dimuon large room to improve (we conservatively assumed |\eta mu|<2.5, losing lots of signals)
- Disappearing track great potential (can push to the kinematic limit)!

See also Capdevilla, Meloni, Simoniello, Zurita, 2102.11292

Thank you!

Summary (by energy)

We only combine the missing mass searches (mono-muon, mono-photon, VBF dimuon)

High Energy Muon Collider will cover all of them with different run energies.

Electroweak precision probes for these EW multiplets, mainly useful for the high n-plets.

Collider always provides definitive measures for new particles (even if we discover WIMP DM in e.g., DD).

Minimal transverse displacement

- Only use the central tracks, |eta|<1.5
- Current design have first layer of pixel detector at 3cm (new discussion about 2cm)
- We assume at least two-hits can be measured at 5cm
- Show both pair reconstruction or single reconstruction results
- Requiring 50 signal events for discovery

$$d_T^{
m min} = 5$$
 cm with $|\eta_\chi| < 1.5$

$$\epsilon_{\chi}(\cos\theta, \gamma, d_T^{\min}) = \exp\left(\frac{-d_T^{\min}}{\beta_T \gamma c \tau}\right)$$

C APS April Meeting Zhen Liu 04/17/2021 f 12

All combinations of components of the EW multiplet are included, so-long as they respect the underlying gauge symmetries

Mono-Photon

Rate grows with n-plets as roughly $n^{2\sim3}$ (DY) and $n^{4\sim5}$ Doublet and Triplet very hard to probe

Mono-photon

Missing mass:

- Sharp kinematic features
- Signal-background separation
- Signal parameter determination

Signal-background ratio 10^-3 At lepton colliders systematics controlled to this level should be achievable but requires theory & experimental work

Mono-Photon Kinematics

04/17/2021 16

Mono-muon Kinematics

Ruhdorfer, Salvioni, Weiler, 1910.04170

See also Capdevilla, Meloni, Simoniello, Zurita, <u>2102.11292</u>

Requirement / Region	$\mathrm{SR}_{1t}^{\gamma}$	$\mathrm{SR}_{2t}^{\gamma}$
Vetoes	leptons a	and jets
Leading tracklet $p_{\rm T}$ [GeV]	> 300	> 20
Leading tracklet θ [rad]	$[2/9\pi,$	$7/9\pi]$
Subleading tracklet $p_{\rm T}$ [GeV]	-	> 10
Tracklet pair Δz [mm]	-	< 0.1
Photon energy [GeV]	> 25	> 25

	$\mathrm{SR}_{1t}^{\gamma}$	$\mathrm{SR}_{2t}^{\gamma}$
Total background	187.8 ± 0.6	0.16 ± 0.05
$\tilde{W}, 2.7 \text{ TeV}, \tau = 0.2 \text{ ns}$	201 ± 5	199 ± 4
\tilde{H} , 1.1 TeV, $\tau = 0.03$ ns	250 ± 4	171.5 ± 2.1