A final word on minimal dark matter at future lepton colliders

S.Bottaro, D.Buttazzo, M.Costa, R.Franceschini, P.Panci, D.Redigolo, L.Vittorio

Simplest (and minimal!!) set-up: Standard Model + EW n-plet of SU(2)

Dark Matter (DM) is the neutral component of the n-plet

Simplest (and minimal!!) set-up: Standard Model + EW n-plet of SU(2)

Dark Matter (DM) is the neutral component of the n-plet

In this talk: (real) odd n in order to avoid bounds from DD (Y=0)

Simplest (and minimal!!) set-up: Standard Model + EW n-plet of SU(2)

Dark Matter (DM) is the neutral component of the n-plet

In this talk: (real) odd n in order to avoid bounds from DD (Y=0)

Also even n is possible, but requires mixing partners... $(Y \neq 0)$

Simplest (and minimal!!) set-up: Standard Model + EW n-plet of SU(2)

Dark Matter (DM) is the neutral component of the n-plet

In this talk: (real) odd n in order to avoid bounds from DD (Y=0)

Also even n is possible, but requires mixing partners... $(Y \neq 0)$

Computability criterion: only $n \le 9(F), 11(S)$ is possible (we need the mass of the DM << Landau poles)

Simplest (and minimal!!) set-up: Standard Model + EW n-plet of SU(2)

Dark Matter (DM) is the neutral component of the n-plet

In this talk: (real) odd n in order to avoid bounds from DD (Y=0)

Also even n is possible, but requires mixing partners... $(Y \neq 0)$

Computability criterion: only $n \le 9(F),11(S)$ is possible (we need the mass of the DM << Landau poles)

How can we probe/exclude it????

Simplest (and minimal!!) set-up: Standard Model + EW n-plet of SU(2)

Dark Matter (DM) is the neutral component of the n-plet

In this talk: (real) odd n in order to avoid bounds from DD (Y=0)

Also even n is possible, but requires mixing partners... $(Y \neq 0)$

Computability criterion: only $n \le 9(F), 11(S)$ is possible (we need the mass of the DM << Landau poles)

How can we probe/exclude it????

- 1. high-energy collider
- Direct Detection (DD)
- Indirect Detection (ID)

Simplest (and minimal!!) set-up: Standard Model + EW n-plet of SU(2)

Dark Matter (DM) is the neutral component of the n-plet

In this talk: (real) odd n in order to avoid bounds from DD (Y=0)

Also even n is possible, but requires mixing partners... $(Y \neq 0)$

Computability criterion: only $n \le 9(F),11(S)$ is possible (we need the mass of the DM << Landau poles)

How can we probe/exclude it????

- high-energy collider
- 2. Direct Detection (DD)
- Indirect Detection (ID)

WIMPs @ high-energy lepton colliders

Why high energy lepton colliders?

- EW nature of signal
- Full event reconstruction (MIM, etcetc)

WIMPs @ high-energy lepton colliders

Why high energy lepton colliders?

- EW nature of signal
- Full event reconstruction (MIM, etcetc)

How to detect DM @ lepton colliders?

- Tracks from the charged states in the n-plet
- Recoil against an invisible object: mono-X/di-X signals

WIMPs @ high-energy lepton colliders

Why high energy lepton colliders?

- EW nature of signal
- Full event reconstruction (MIM, etcetc)

How to detect DM @ lepton colliders?

- Tracks from the charged states in the n-plet
- Recoil against an invisible object: mono-X/di-X signals

$$\sqrt{s} = 3$$
, 14, 30, 100 TeV
 $\mathcal{L} = 1$, 20, 90, 1000 ab⁻¹

Mono-X channels

$$\ell^{+}\ell^{-} \to \chi^{k}\chi^{-k-p} + V + X^{(p)}$$

Mono-X channels

$$\ell^+\ell^- \rightarrow \chi^k \chi^{-k-p} + V + X^{(p)}$$

DM couple

Mono-X channels

$$\ell^+\ell^- \to \boxed{\chi^k\chi^{-k-p}} + \underbrace{V}_{\text{EW gauge boson}} + \underbrace{V}_{\text{EW gauge boson}}$$

$$\ell^+\ell^- \to \underbrace{\chi^k\chi^{-k-p}}_{\text{DM couple}} + \underbrace{V}_{\text{EW gauge boson}}^{\text{any additional undetected particles}}_{\text{undetected particles}}$$

In our study we have considered three different mono-X cases:

- Mono-photon
- Mono-Z
- Mono-W

Signal events:

$$\mu^-\mu^+ \to \gamma \chi^n \chi^{-n}$$

 $\mu^{-}\mu^{+} \to \gamma \chi^{n} \chi^{-n}$ $\mu^{-}\mu^{+} \to \gamma \nu \bar{\nu}$ Signal events:

Background (SM) events:

Signal events: $\mu^-\mu^+ \to \gamma \chi^n \chi^{-n}$

Background (SM) events: $\mu^-\mu^+ \to \gamma \nu \bar{\nu}$

Reach computation? $\frac{S}{\sqrt{S+B+(\epsilon_S S)^2+(\epsilon_B B)^2}}$

Signal events: $\mu^-\mu^+ \to \gamma \chi^n \chi^{-n}$

Background (SM) events: $\mu^-\mu^+ o \gamma \nu \bar{\nu}$

Reach computation? $\frac{S}{\sqrt{S+B+(\epsilon_S S)^2+(\epsilon_B B)^2}}$

Strategy to maximise the reach: set of cuts on kinematical variables!

 $MIM > 2m_{\chi}$, $|\eta_{\gamma}| < \eta_{\gamma cut}$, $MET > MET_{cut}$

Signal events:
$$\mu^-\mu^+ \to \gamma \chi^n \chi^{-n}$$

Background (SM) events: $\mu^-\mu^+ \to \gamma \nu \bar{\nu}$

Reach computation?
$$\frac{S}{\sqrt{S+B+(\epsilon_S S)^2+(\epsilon_B B)^2}}$$

Strategy to maximise the reach: set of cuts on kinematical variables!

$${
m MIM}>2m_\chi$$
 , $|\eta_\gamma|<\eta_{\gamma{
m cut}}$, ${
m MET}>{
m MET}_{
m cut}$ exploit the events kinematics

Signal events:
$$\mu^-\mu^+ \to \gamma \chi^n \chi^{-n}$$

Background (SM) events: $\mu^-\mu^+ o \gamma \nu \bar{\nu}$

Reach computation?
$$\frac{S}{\sqrt{S+B+(\epsilon_S S)^2+(\epsilon_B B)^2}}$$

Strategy to maximise the reach: set of cuts on kinematical variables!

$$ext{MIM} > 2m_{\chi}$$
, $|\eta_{\gamma}| < \eta_{\gamma ext{cut}}$, $ext{MET} > ext{MET}_{ ext{cut}}$

exploit the events kinematics

improvement of the signal-to-noise ratio S/B!

To be repeated for all c.o.m. energies and 0.1% or 1% of systematics

The signal-to-noise ratio S/B results to be low for all the mono-X processes!!

The signal-to-noise ratio S/B results to be low for all the mono-X processes!!

Bounds can be put only if systematic uncertainties are well under control

The signal-to-noise ratio S/B results to be low for all the mono-X processes!!

Bounds can be put only if systematic uncertainties are well under control

Other possibility: di-X channels (X=Y,W)

The signal-to-noise ratio S/B results to be low for all the mono-X processes!!

Bounds can be put only if systematic uncertainties are well under control

Other possibility: di-X channels (X=Y,W)

Two huge advantages:

- 1. higher S/B ratio
- enhancement of the signals wrt bkg due to high charges in the multiplet (more evident for higher representations)

The signal-to-noise ratio S/B results to be low for all the mono-X processes!!

Bounds can be put only if systematic uncertainties are well under control

Other possibility: di-X channels (X=Y,W)

Two huge advantages:

- 1. higher S/B ratio
- enhancement of the signals wrt bkg due to high charges in the multiplet (more evident for higher representations)

Similar strategy for the analysis, for the same-sign di-W case the bkg comes from mistagging of charges

Thermal masses VS collider reaches

DM spin	Representation	M_{DM} [TeV]
Real scalar	3	2.53 ± 0.01
	5	15.4 ± 0.1
	7	54.2 ± 0.6
	9	120 ± 1
Majorana fermion	3	2.86 ± 0.01
	5	13.6 ± 0.3
	7	48.3 ± 0.5
	9	112 ± 1

See M. Costa talk, session B19

L. Vittorio (SNS & INFN, Pisa)

Thermal masses VS collider reaches

DM spin	Representation	M_{DM} [TeV]
Real scalar	3	2.53 ± 0.01
	5	15.4 ± 0.1
	7	54.2 ± 0.6
	9	120 ± 1
Majorana fermion	3	2.86 ± 0.01
	5	13.6 ± 0.3
	7	48.3 ± 0.5
	9	112 ± 1

See M. Costa talk, session B19

Opportunities from Indirect/Direct Detection

Conclusions

 High-energy muon collider as a fundamental laboratory to put a final word on MDM candidates

Conclusions

- High-energy muon collider as a fundamental laboratory to put a final word on MDM candidates
- Analysis developed for various mono-X/di-X channels (different behaviour in function of systematics!!!)

Conclusions

- High-energy muon collider as a fundamental laboratory to put a final word on MDM candidates
- Analysis developed for various mono-X/di-X channels (different behaviour in function of systematics!!!)
- Results?
 - 3-plet @ 10/14 TeV with DT
 - 5-plet "almost" @ 30 TeV, low systematics (still missing DT)
 - 7-plet requires more than 100 TeV...

Conclusions

- High-energy muon collider as a fundamental laboratory to put a final word on MDM candidates
- Analysis developed for various mono-X/di-X channels (different behaviour in function of systematics!!!)
- Results?
 - 3-plet @ 10/14 TeV with DT
 - 5-plet "almost" @ 30 TeV, low systematics (still missing DT)
 - 7-plet requires more than 100 TeV...
- **Disappearing tracks** to be studied in detail for n≥5

Conclusions

- High-energy muon collider as a fundamental laboratory to put a final word on MDM candidates
- Analysis developed for various mono-X/di-X channels (different behaviour in function of systematics!!!)
- Results?
 - 3-plet @ 10/14 TeV with DT
 - 5-plet "almost" @ 30 TeV, low systematics (still missing DT)
 - 7-plet requires more than 100 TeV...
- Disappearing tracks to be studied in detail for n≥5
- **ID/DD** are a good and independent opportunity to discover the heaviest n-plets

THANKS FOR THE ATTENTION!!!!

BACK-UP SLIDES

Landau Poles & Computability criterion for MDM scenarios

DM spin	Representation	$oxed{\Lambda_{Landau}/M_{DM}}$
Real scalar	3	3×10^{37}
	5	5×10^{36}
	7	2×10^{19}
	9	3×10^{3}
	11	20
Majorana fermion	3	3×10^{37}
	5	3×10^{17}
	7	1×10^4
	9	30

Fermionic (Majorana) 7-plet - computation of the thermal mass

Fermionic (Majorana) 7-plet - computation of the thermal mass

Scalars: higher n, larger mass (because of larger xsec)

L. Vittorio (SNS & INFN, Pisa)

Mono-Z:

$$\mu^{-}\mu^{+} \to Z\chi^{k}\chi^{-k}$$
$$\mu^{-}\mu^{+} \to Z\nu_{l}\bar{\nu}_{l}$$

signal

$$\mu^-\mu^+ o Z\nu_l\bar{\nu}_l$$

Mono-Z:

$$\mu^-\mu^+ \to Z\chi^k\chi^{-k}$$

signal

$$\mu^-\mu^+ \to Z\nu_l\bar{\nu}_l$$

bkg

Mono-W:

$$\mu^-\mu^+ \to W^-\chi^k\chi^{-k+1}$$

signal

$$\mu^- \gamma \to W^- \nu_\mu$$

bkg 1

$$\mu^-\mu^+ \to W^-l^+\nu_l$$

Mono-Z:

$$\mu^-\mu^+ \to Z\chi^k\chi^{-k}$$

signal

$$\mu^-\mu^+ o Z \nu_l \bar{\nu}_l$$

bkg

Mono-W:

$$\mu^-\mu^+ \to W^-\chi^k\chi^{-k+1}$$

signal

matching between the two bkgs: $\begin{pmatrix} \mu^-\gamma \to W^-\nu_\mu \\ \mu^-\mu^+ \to W^-l^+\nu_l \end{pmatrix}$

$$\mu^- \gamma \to W^- \nu_\mu$$

bkg 1

$$\mu^-\mu^+ \to W^-l^+\nu_l$$

$$\eta_{\text{match}} = 5.4, 7, 7.5, 8.8 \text{ at } \sqrt{s} = 3, 14, 30, 100 \text{ TeV}$$

Di-photon:

$$\mu^-\mu^+ \to \gamma\gamma\chi^k\chi^{-k}$$

$$\mu^-\mu^+ \to \gamma\gamma\nu_l\bar{\nu}_l$$

Di-photon:

$$\mu^-\mu^+ \to \gamma\gamma\chi^k\chi^{-k}$$

$$\mu^-\mu^+ \to \gamma\gamma\nu_l\bar{\nu}_l$$

Same-sign di-W:

$$\mu^{-}\mu^{+} \to W^{-}W^{-}\chi^{k}\chi^{-k+2}$$

$$\mu^-\mu^+ \to W^+W^-\nu_l\bar{\nu}_l$$

bkg

signal

Di-photon:

$$\mu^-\mu^+ \to \gamma\gamma\chi^k\chi^{-k}$$

signal

$$\mu^-\mu^+ \to \gamma\gamma\nu_l\bar{\nu}_l$$

bkg

Same-sign di-W:

$$\mu^{-}\mu^{+} \to W^{-}W^{-}\chi^{k}\chi^{-k+2}$$

signal

$$\mu^-\mu^+ \to W^+W^-\nu_l\bar{\nu}_l$$

bkg

mistagging of charges necessary to have a NON-ZERO BKG!!!