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WIMPs @ high-energy lepton colliders

Why high energy lepton colliders? g Up

o EW nature of signal ~ —
e Full event reconstruction (MIM, etcetc)

How to detect DM @ lepton colliders?

o Tracks from the charged states in the n-plet
o Recoil against an invisible object:

mono-X/di-X signals
/ g 0 /// 2
Vs =3, 14, 30, 100 TeV 4
£ =1, 20,90, 1000 ab~1 S
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Mono-X channels
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Mono-X channels

(0 —

Xx P V)+

DM couple

In our study we have considered three different mono-X cases:

e  Mono-photon

e Mono-Z

e Mono-W
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One detailed example: the mono-photon

Signal events: ,u_,LL+ — yx"x "
Background (SM) events: ,LL_,LL+ — YVU
S

Reach computation?

VS5 + B+ (esS)2 + (epB)>

Strategy to maximise the reach: set of cuts on kinematical variables!

MIM > 2my |, |7y < Myeus , MET > METcy

exploit the events kinematics

| > improvement of the signal-to-noise ratio S/B!
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One detailed example: the mono-photon (7F)
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One detailed example: the mono-photon (7F)

Fraction of Events

el Mppy = 5.5 TeV
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To be repeated for all c.o.m. energies and 0.1% or 1% of systematics
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An extension: Di-X channels

The signal-to-noise ratio S/B results to be low for all the mono-X processes!!

uncertainties are well under control

> Bounds can be put only if systematic

Other possibility: di-X channels (X=y,W)

Two huge advantages:
1. higher S/B ratio
2. enhancement of the signals wrt bkg due to

high charges in the multiplet (more evident
for higher representations)

Similar strategy for the analysis, for the same-sign di-W case the bkg comes from mistagging of charges
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\'s = 14000 GeV, lumi = 20 ab™", fermionic 3-plet
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Thermal masses VS collider reaches

\'s = 14000 GeV, lumi = 20 ab™", fermionic 3-plet

DM spin Representation | Mpy; [TeV] HEn
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Opportunities from Indirect/Direct Detection
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Conclusions

e High-energy muon collider as a fundamental laboratory to put a final
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Conclusions

e High-energy muon collider as a fundamental laboratory to put a final
word on MDM candidates
e Analysis developed for various mono-X/di-X channels (different
behaviour in function of systematics!!!)
® Results?
o 3-plet @ 10/14 TeV with DT
o 5-plet “almost” @ 30 TeV, low systematics (still missing DT)
o 7-plet requires more than 100 TeV...

e Disappearing tracks to be studied in detail for n=5
e ID/DD are a good and independent opportunity
to discover the heaviest n-plets
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Landau Poles & Computability criterion for MDM scenarios

DM spin Representation | Arandaw/Mpm
Real scalar 3 3 x 10°7
5 5 52 1350
7 2 x 1019
9 3 x 103
il 20
Majorana fermion 3 3 x 1037
5 3 x 1017
7 1 x 104
9 30
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Fermionic (Majorana) 7-plet - computation of the thermal mass

2
Qparh

L. Vittorio (SNS & INFN, Pisa)

0.18
0.16
0.12
0.10

0.08 -

0.06

“10...20“.‘30”‘.40“‘
M, [TeV]

L ] L L
50

— Perturbative

- Sommerfeld

- Bound States



Fermionic (Majorana) 7-plet - computation of the thermal mass

— Perturbative
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- Bound States
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Scalars: higher n, larger mass (because of larger xsec)
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Other channels: Signals and Backgrounds

k signal

Mono-Z: ot — ZxFxT

B puT = Zyy bkg
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Other channels: Signals and Backgrounds

Mono-Z: ,u_,u+ — ZXkX_k signal
B puT = Zyy bkg
Mono-W: ,LL_,LL+ — W_ka_k_H signal
uy— Wy, bkg 1
matching between
the two bkgs: pf,uJF — Wy, bkg 2

Nmatch = 9.4, 7, 7.5, 8.8 at +/s =3, 14, 30, 100 TeV
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Other channels: Signals and Backgrounds

k .
signal

Di-photon: ot = Xy

popt = bkg
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Other channels: Signals and Backgrounds
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Other channels: Signals and Backgrounds

Di-photon: wopt = Wq/xkx—k signal
popt =y bkg

Same-sign di-W: pmpt = WW TR signal
,UJ_,u—i_ — W_f_W_VlDl bkg

mistagging of charges necessary to have a NON-ZERO BKG!!!
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