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Mono-X channels

DM couple
EW gauge boson

any additional 
undetected particles

In our study we have considered three different mono-X cases:

• Mono-photon

• Mono-Z

• Mono-W

sizable rates due to 

large weak charge 

of DM and beams!
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Signal events:

One detailed example: the mono-photon

Background (SM) events:

Reach computation?

Strategy to maximise the reach: set of cuts on kinematical variables!

exploit the events kinematics
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improvement of the signal-to-noise ratio S/B!
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To be repeated for all c.o.m. energies and 0.1% or 1% of systematics

One detailed example: the mono-photon (7F)
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Two huge advantages:
1. higher S/B ratio
2. enhancement of the signals wrt bkg due to 

high charges in the multiplet (more evident 
for higher representations)
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Opportunities from Indirect/Direct Detection
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● Disappearing tracks to be studied in detail for n⩾5
● ID/DD are a good and independent opportunity                                                     

to discover the heaviest n-plets

● High-energy muon collider as a fundamental laboratory to put a final 
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Landau Poles & Computability criterion for MDM scenarios
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Fermionic (Majorana) 7-plet - computation of the thermal mass

Scalars: higher n, larger mass (because of larger xsec)
L. Vittorio (SNS & INFN, Pisa)
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Other channels: Signals and Backgrounds

Di-photon: signal

bkg

Same-sign di-W: signal

bkg

mistagging of charges necessary to have a NON-ZERO BKG!!!
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