

Electroweak parton distribution functions at a high-energy muon collider

Yang Ma

Pittsburgh Partcile-physics, Astrophysics, and Cosmology Center,
Department of Physics and Astronomy,
University of Pittsburgh, PA 15260, USA

April 20, 2021

In collaboration with Tao Han and Keping Xie

[T. Han, Y. Ma, K.Xie 2007.14300]

[T. Han, Y. Ma, K.Xie 2103.09844]

A little bit backaground (I): PDFs of a lepton

"Equivalent photon approximation (EPA)"

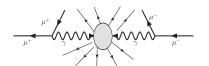
[C. F. von Weizsacker, Z. Phys. 88, 612 (1934)]

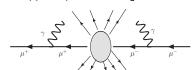
Treat photon as a parton constituent in the electron [E. J. Williams, Phys. Rev. 45, 729 (1934)]

$$\sigma(\ell^- + a \to \ell^- + X) = \int \mathrm{d}x f_{\gamma/\ell} \hat{\sigma}(\gamma a \to X)$$

$$f_{\gamma/\ell, \text{EPA}}(x_\gamma, Q^2) = \frac{\alpha}{2\pi} \frac{1 + (1 - x_\gamma)^2}{x_\gamma} \ln \frac{Q^2}{m_\ell^2}$$

Applications at muon collider


[Frixione, Mangano, Nason, Ridolfi 2103.09844] [Budnev, Ginzburg, Meledin, Serbo, Phys. Rept.(1975)]


Production cross sections

$$\sigma(\ell^+\ell^- \to F + X) = \int_{\tau_0}^1 d\tau \sum_{ij} \frac{d\mathcal{L}_{ij}}{d\tau} \ \hat{\sigma}(ij \to F), \ \tau = \hat{s}/s$$

Partonic luminosities

$$\frac{d\mathcal{L}_{ij}}{d\tau} = \frac{1}{1 + \delta_{ij}} \int_{\tau}^{1} \frac{d\xi}{\xi} \left[f_i(\xi, Q^2) f_j\left(\frac{\tau}{\xi}, Q^2\right) + (i \leftrightarrow j) \right]$$

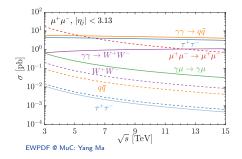
A high-energy muon collider at first glance

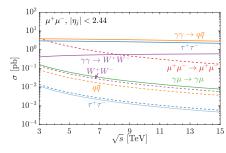
What are the dominant processes at a high-energy muon collider?

■ Leading-order: $\mu^+\mu^- \to \mu^+\mu^-$, $\tau^+\tau^-$, $q\bar{q}$, W^+W^- , and $\gamma\mu \to \gamma\mu$

• $\gamma\gamma$ scatterings: $\gamma\gamma \rightarrow \tau^+\tau^-, q\bar{q}, W^+W^-$

Need some cuts:


■ Detector angle: $\theta > 5^{\circ} (10^{\circ}) \iff |\eta| < 3.13(2.44)$


■ Threshold: $m_{ij} > 20$ GeV

 \blacksquare Need a p_T cut to separate from the nonperturbative hadronic production

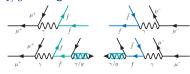
[Chen, Barklow, and Peskin, hep-ph/9305247; Drees and Godbole, PRL 67, 1189, T. Barklow, etal, LCD-2011-020]

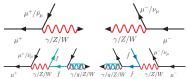
$$p_T > (4 + \sqrt{s}/3 \,\mathrm{TeV}) \,\mathrm{GeV}$$

Go beyond the EPA at a high-energy muon collider

We have been doing:

- $\ell^+\ell^- \text{ annihilation } \underline{\qquad}_{\mu^-}$
- EPA and ISR $\frac{\gamma}{\mu^{+}} \qquad \frac{\gamma}{\mu^{-}} \qquad \frac$
- "Effective W Approx." (EWA)
 [G. Kane, W. Repko, and W. Rolnick, PLB 148 (1984) 367]




We will add:

[T. Han, Y. Ma, K.Xie 2007.14300, 2103.09844]

■ Above μ_{QCD} : QED \otimes QCD q/g emerge

■ Above $\mu_{\rm EW} = M_Z$: EW⊗QCD EW partons emerge

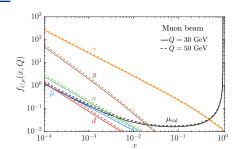
In the end, everything is parton, i.e. the full SM PDFs.

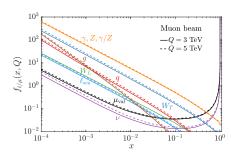
EWPDF @ MuC: Yang Ma

The PDFs for a muon collider

■ QED⊗QCD PDFs:

$$f_{\mu_{\mathrm{val}}}, f_{\gamma}, f_{\ell_{\mathrm{sea}}}, f_{q}, f_{g}$$

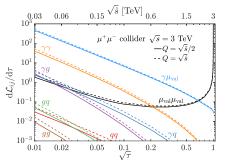

- lacksquare Scale uncertainty: 20% for $f_{g/\mu}$
- The averaged momentum fractions $\langle x_i \rangle = \int x f_i(x) dx$

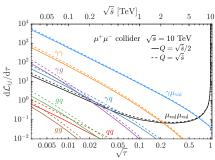

$Q(\mu^{\pm})$	μ_{val}	γ	ℓsea	q	g
30 GeV	98.2	1.72	0.019	0.024	0.0043
50 GeV	98.0	1.87	0.023	0.029	0.0051
M_Z	97.9	2.06	0.028	0.035	0.0062

■ EW PDFs: All SM particles

Q	μ	$\gamma, Z, \gamma Z$	W^{\pm}	v	ℓsea	q	g
M_Z	97.9	2.06	0	0	0.028	0.035	0.0062
3 TeV	91.5	3.61	1.10	3.59	0.069	0.13	0.019
5 TeV	89.9	3.82	1.24	4.82	0.077	0.16	0.022

- \blacksquare Scale uncertainty: $\sim 20\%$ between Q=3 TeV and Q=5 TeV
- The EW correction is not small: $\sim 100\%$ for $f_{d/\mu}$ due to relatively large SU(2) gauge coupling.
- lacksquare W_L does not evolve

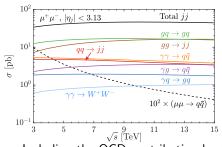


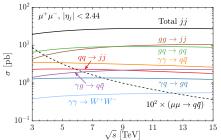

Parton luminosities at a possible muon collider

Consider a 3 TeV and a 10 TeV machine

Partonic luminosities for

$$\mu^+\mu^-, \gamma\mu, \gamma\gamma, qq, \gamma q, \gamma g, gq, \text{ and } gg$$


- The partonic luminosity of $\gamma g + \gamma q$ is $\sim 20\%$ of the $\gamma \gamma$ one
- \blacksquare The partonic luminosities of $qq,~gq,~{\rm and}~gg$ are $\sim 0.5\%$ of the $\gamma\gamma$ one
- Given the stronger QCD coupling, sizable QCD cross sections are expected.
- Scale uncertainty is $\sim 20\% (\sim 50\%)$ for photon (gluon) initiated processes.

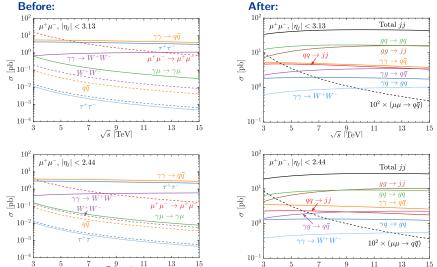

Jet production at a possible muon collider

- \blacksquare Low- p_T range: photon induced non-perturbative hadronic production
 - [Chen, Barklow, and Peskin, hep-ph/9305247; Drees and Godbole, PRL 67, 1189, T. Barklow, etal, LCD-2011-020]
- High- p_T range $[p_T > (4 + \sqrt{s}/3\,\mathrm{TeV})\,\mathrm{GeV}]$: perturbatively computable

$$\gamma\gamma \to q\bar{q}, \ \gamma g \to q\bar{q}, \ \gamma q \to gq,$$

 $qq \to qq \ (gg), \ gq \to gq \ \text{and} \ gg \to gg \ (q\bar{q}).$

 ${f Q}=\sqrt{\hat s}/2$, due to large $lpha_s\ln\left(Q^2
ight)$, a $30\sim40\%$ enhancement if $Q=\sqrt{\hat s}$

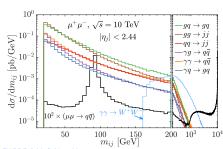


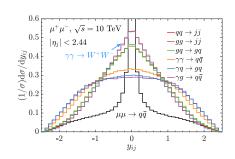
- Including the QCD contribution leads to much larger total cross section.
- gg initiated cross sections are large for its large multiplicity;
- gq initiated cross sections are large for its large luminosity. EWPDF @ MuC: Yang Ma
- $\gamma \gamma$ initiated cross sections here are smaller than the EPA results.

Refresh the picture of high-energy muon colliders

What is the dominant process at a high-energy muon collider?

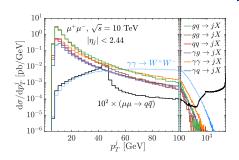
Quark/gluon initiated jet production dominates

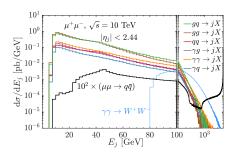

Di-jet distributions at a muon collider

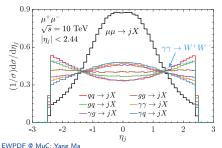

Rather a conservative set up: $\theta = 10^{\circ}$

Some physics:

Two different mechanisms: $\mu^+\mu^-$ annihilation VS Fusion processes

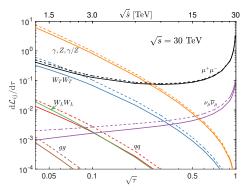

- Annihilation is more than 2 orders of magnitude smaller than fusion process.
- Annihilation peaks at $m_{ij} \sim \sqrt{s}$;
- Fusion processes peak near m_{ij} threshold.
- Annihilation is very central, spread out due to ISR;
- Fusion processes spread out, especially for γq and γg initiated ones.





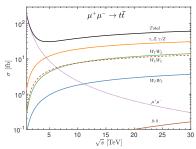
EWPDF @ MuC: Yang Ma

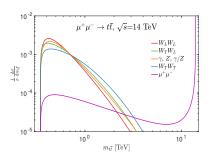
Inclusive jet distributions at a muon collider

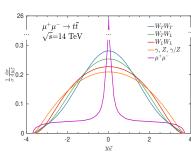

- Jet production dominates over WW production until $p_T > 60$ GeV;
- WW production takes over around energy ~ 200 GeV.
- **QCD** contributions are mostly forward-backward; $\gamma\gamma$, γq , and γg initiated processes are more isotropic.

EVVEDT @ Muc. Tang

An EW version of HE LHC

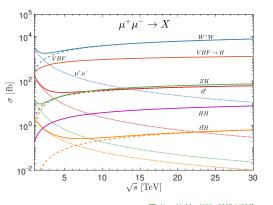

- All SM particles are partons when the machine energy is high
- We are able to determine the partons with their different polarizations


The EW parton luminosities of a 30 TeV muon collider



[T. Han, Y. Ma, K.Xie 2007.14300]

One example: $t\bar{t}$ production at a muon collider



The full picture: Semi-inclusive processes

Just like in hadronic collisions: $\mu^+\mu^- \rightarrow$ exclusive particles + remnants

[T. Han, Y. Ma, K.Xie 2007.14300]

Some observations:

- The annihilations decrease as 1/s.
- ISR needs to be considered, which can give over 10% enhancement.
- The fusions increase as $\ln^p(s)$, which take over at high energies.
- The large collinear logarithm $\ln(s/m_{\rm H}^2)$ needs to be resummed, set $Q = \sqrt{\hat{s}}/2$.

Summary and prospects

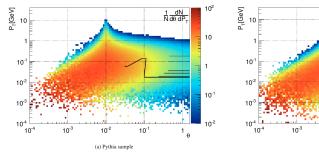
EWPDF is important and necessary:

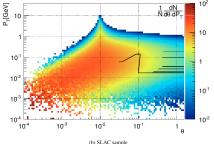
- At very high energies, the collinear splittings dominate. All SM particles should be treated as partons that described by proper PDFs.
 - The large collinear logarithm needs to be resummed via solving the DGLAP equations, so the QCD partons (quarks and gluons) emerge.
 - When $Q>M_Z$, the EW splittings are activated: the EW partons appear, and the existing QED \otimes QCD PDFs may receive big corrections.

A high-energy muon collider is an EW version of HE LHC

- There are many things to work on: SUSY, DM, Higgs, etc.
- lacksquare The parton fusion processes exceed the $\mu^+\mu^-$ annihilation

[T. Han, Y. Ma, K.Xie 2007.14300]


- The main background of is the jet production:
 - Low p_T range: non-perturbative γγ initiated hadronic production dominates
 [Chen, Barklow, and Peskin, hep-ph/9305247; Drees and Godbole, PRL 67, 1189,T. Barklow, etal, LCD-2011-020]
 - \blacksquare High p_T range, q and g initiated jet production dominates [T. Han, Y. Ma, K.Xie 2103.09844]
- EWPDF allows to determine the contributions from different partons and their different ploarizations.


Nonperturbative hadronic production

■ Large photon induced non-perturbative hadronic production

[Drees and Godbole, PRL 67 1189, hep-ph/9203219]
[Chen, Barklow, and Peskin, hep-ph/9305247; Godbole, Grau, Mohan, Pancheri, SrivastavaNuovo Cim. C 034S1]

- lacktriangle $\sigma_{\gamma\gamma}$ may reach micro-barns level at TeV c.m. energies
- lacksquare may reach nano-barns, after folding in the $\gamma\gamma$ luminosity
- The events populate at low p_T regime.

[T. Barklow, D. Dannheim, M. O. Sahin, and D. Schulte, LCD-2011-020]

EWPDF @ MuC: Yang Ma