
C++20 Ranges in Practice

Marc Paterno

21 April 2021

Section 1

My summary

2/22 21 April 2021 Paterno | C++20 Ranges in Practice

What is the range library?

The range library is an extension of the Standard Template Library that makes its

iterators and algorithms more powerful by making them composable.

Introduces ranges and views:
ranges encapsulate a begin (iterator) and an end (sentinel) in a single object.

views are “composable adaptations of ranges where the adaptation happens lazily as the

view is iterated”.

Ranges do not eliminate iterators; they are an abstraction layer over iterators.

3/22 21 April 2021 Paterno | C++20 Ranges in Practice

Several range implementations

There is a range library that is part of C++ (the current standard, “C++20”)

There are implementations that work with pre-20 versions of the language
range v3, by Eric Niebler, upon which the range library in the standard is based. It

contains additional goodies not in the standard (mainly actions, which provide eager

application of an algorithm that mutates a container in-place). Requires a C++14 compiler.

Does not rely upon compiler support for concepts; error messages can be horrifying.
https://github.com/ericniebler/range-v3

nanorange, by our speaker Tristan Brindle; requires C++17. I have had trouble getting

examples from this talk to work with the speaker’s library.
https://github.com/tcbrindle/NanoRange

Boost.range was a very early precursor, but I would not recommend it for any new use.
https://www.boost.org/doc/libs/1_75_0/libs/range/doc/html/index.html

4/22 21 April 2021 Paterno | C++20 Ranges in Practice

https://github.com/ericniebler/range-v3
https://github.com/tcbrindle/NanoRange
https://www.boost.org/doc/libs/1_75_0/libs/range/doc/html/index.html

Ranges offer convenience for common use cases

How do you sort a vector of integers v?

// C++17

std::sort(begin(v), end(v));

// C++20

std::ranges::sort(v);

No need to specify the start and the end when you want to sort the whole thing.

Removes an entire class of errors: passing mismatching iterators, or iterators in the

wrong order.

5/22 21 April 2021 Paterno | C++20 Ranges in Practice

Avoiding dangling iterators

Temporary variables can be dangerous because they can lead to dangling iterators,

pointers, or references.
dangling means the iterator (or pointer, or reference) refers to an object that no longer

exists.

#include "range/v3/all.hpp"

#include <iostream>

#include <vector>

std::vector<int> get_input() { return {1, 2, 3}; }

int main() {

auto iter = ranges::min_element(get_input());

std::cout << *iter << '\n'; // DOES NOT COMPILE!

}

6/22 21 April 2021 Paterno | C++20 Ranges in Practice

Types that don’t need dangling protection

std::ranges::enable_borrowed_range exists to tell the compiler that things like

std::string_view and std::span don’t have this problem.
It is in the library so that you can use it to declare your own templates as borrowed ranges.

This is because their iterators point to a controlled buffer elsewhere, and and long as

that buffer exists we’re OK.
Is this appropriate for class templates in your code base?

7/22 21 April 2021 Paterno | C++20 Ranges in Practice

Borrowed range

A borrowed range is either:

an lvalue (an object with a name)

an rvalue of a type that has specialized std::ranges::enable_borrowed_range.

Not the same thing as a view.

8/22 21 April 2021 Paterno | C++20 Ranges in Practice

views

A view is range which:

is default constructible

has constant-time move and destruction operations (not dependent on number of

elements in the view)

is either non-copiable or has constant-time copy operations (no accidentally expensive

copy can be used)

Views are made to be passed by value, keeping semantics of their use simple.

Classes that are views have to “opt in”; specialize std::ranges::enable_view trait, or

inherit from std::ranges::view_base or std::ranges::view_interface.

Not all views are borrowed ranges, and not all borrowed ranges are views.

To create a view from a borrowed range, use std::ranges::views::all(...).

9/22 21 April 2021 Paterno | C++20 Ranges in Practice

viewable ranges

views and borrowed ranges are both viewable ranges.

Range adaptors work only on viewable ranges.

Making a mistake with this can lead to horrifying error messages.

Tristan has a blog post Rvalue Ranges and Views in C++20 at

https://tristanbrindle.com/posts/rvalue-ranges-and-views.

10/22 21 April 2021 Paterno | C++20 Ranges in Practice

https://tristanbrindle.com/posts/rvalue-ranges-and-views

Algorithms on views

The algorithms in namespace std::views are lazy: they produce values only as

needed.

This helps to remove the need for intermediate storage of containers of intermediate

results.

What is the efficiency?
Avoiding making copies is generally a benefit.

Implementations are not always smart enough to match the efficiency of hand-crafted

code.

Is the improvement in ease if reading enough to offset runtime speed?

What about ease of writing and the terrible error messages?

The answer seems to be: use ranges when it makes the code better.
We’ll look at a speed comparison at the very end of this review.

11/22 21 April 2021 Paterno | C++20 Ranges in Practice

views::common

Used to transform a range to something that has common types for begin and end.

Good practice when passing a range into a C++17 algorithm.

In C++20, this is still important because there isn’t yet a “range-ified” <numeric>,

where std::accumulate, std::reduce and std::transform_reduce live.

12/22 21 April 2021 Paterno | C++20 Ranges in Practice

Projections

A projection is a transformation built into the algorithm itself.

By default, range algorithms use std::identity, which just returns its argument.

Can help simplify even already simple code:

std::vector<Employee> scd = get_scd_sorted();

// Predicate supplied as a lambda

auto not_me =

ranges::find_if(scd,

[](auto const& p){return p.first_name() == "Marc";});

// Using a projection rather than a lambda

auto also_not_me =

ranges::find(scd, "Marc", &Employee::first_name);

13/22 21 April 2021 Paterno | C++20 Ranges in Practice

Numeric algorithms

Author’s code at github.com/tcbrindle/numeric_ranges.

Requires C++20 ranges or the use of nanorange.

Only an approximation for what has been proposed for C++23: no constraints on

templates

I don’t often see std::accumulate and std::inner_product (or the better-named

std::reduce and std::transform_reduce) used.

std::accumulate and std::inner_product are not new.

Is this for good reason? (lack of flexibility? performance?)

Or is it for less good reason? (unfamiliarity? FUD?)

14/22 21 April 2021 Paterno | C++20 Ranges in Practice

github.com/tcbrindle/numeric_ranges

Section 2

Trimming strings

15/22 21 April 2021 Paterno | C++20 Ranges in Practice

Trimming strings

It may be in less numeric algorithms like this that we would see most common use of range

algorithms.

16/22 21 April 2021 Paterno | C++20 Ranges in Practice

Divide and conquer

Tristan describes a general technique for applying composable algorithms like those of the

range library: break up the problem into pieces.

What are the pieces?

Is each step general?

Can each step be generalized?

Example:

generate trimmed view:
trim from the front;

trim from the back;

turn the view into a container (here, a std::string).

17/22 21 April 2021 Paterno | C++20 Ranges in Practice

Second part first: turn the view into a string

Generalized problem: turn view into some realized container.

std::ranges::to<C> to turn a range into a container.

What containers? Sequences, not mappings.

Tristan’s example shows std::string.

github.com/cor3ntin/rangesnext contains several items proposed for C++23. What

does it depend upon?

18/22 21 April 2021 Paterno | C++20 Ranges in Practice

First part second: more breaking up the problem

trim is made from trim_front and trim back.

Each one is independently meaningful and useful (and testable)!

No loss of efficiency? (Because we’re not copying containers, but working with views.)

Function templates declared with return type auto all over the place

Are they needed for correctness? Or just simpler (and less ugly) to write?

Are they damaging to readability? How do we combat this?

trim_back implemented using two reverses of the view. What is the cost of this?

Quick measurements show trim_front is ~ 1/3 the cost of trim_back.

19/22 21 April 2021 Paterno | C++20 Ranges in Practice

“Simplification” of the code?

First version of trim_front was a function that took a range, and return an adapted range.

“Simplification” of it is a function that just returns the adaptor

Result is composed functions, in the style of many functional programming languages.

Does this actually help with composition, or with clarity?

Does it do damage to efficiency?

20/22 21 April 2021 Paterno | C++20 Ranges in Practice

Final tweaks

the functions trim(), trim_back(), trim_front() each always returns the same

value

turn that kind of function into an inline constexpr variable.

21/22 21 April 2021 Paterno | C++20 Ranges in Practice

Final version
namespace rv = ranges::view

inline constexpr auto trim_front = rv::drop_while(::isspace);

inline constexpr auto trim_back = rv::reverse | trim_front | rv::reverse;

inline constexpr auto trim = trim_front | trim_back;

inline std::string

trim_str(std::string const& s) {return s | trim | ranges::to<std::string>;};

ns/op op/s err% total benchmark

105.09 9,515,828.68 0.2% 0.01 cetlib::trim

162.68 6,147,032.17 4.4% 1.00 range trim

Compiled with g++-10 -fconcepts -O3 -std=c++2a on macOS Catalina Intel Core i9

@2.4 GHz.

22/22 21 April 2021 Paterno | C++20 Ranges in Practice

	My summary
	Trimming strings

