黄 Fermilab

 Office of Science

DUNE FD-2 PDS Baseline WBS Sketch

19 April 2021
Ryan Rivera
DUNE-US FD-2 PDS Level 2 Manager

Membrane Only

- Detector:
- Qty. 720, 160 SiPMs, $60 \mathrm{~cm} \times 60 \mathrm{~cm}, \$ 5.1 \mathrm{~K}$ * $720=\$ 3.7 \mathrm{M}$
- 16.6% detector coverage, $0.044 \mathrm{SiPMs} / \mathrm{cm}^{2}$
- Cold Electronics:
- 1 CE box per 4 tiles
$=\$ 1.4 \mathrm{M}$
- 0.2 kW
- Warm Electronics:
- \$135K digitizer + \$285 power supplies
= $\$ 420 \mathrm{~K}$
- Total:
$-\quad \$ 3.7 \mathrm{M}$ detector + \$2M electronics + \$5M labor + \$1.5M nonlabor $=\$ 12.2 \mathrm{M}$

Note: M\&S is no overhead and no spares. Labor is fully-loaded.

Cathode(analog) + 40\%-Membrane

- Detector:
- 288 Membrane, 160 SiPMs, $60 \mathrm{~cm} \times 60 \mathrm{~cm}, \$ 5.1 \mathrm{~K}$ * $288=\$ 1.5 \mathrm{M}$
- 6.6% detector coverage, $0.044 \mathrm{SiPMs} / \mathrm{cm}^{2}$
- 320 Cathode, $160 \mathrm{SiPMs}, 60 \mathrm{~cm} \times 60 \mathrm{~cm}, \$ 6.2 \mathrm{~K}$ * $320=\mathbf{\$ 2 . 0 M}$
- 14.8% coverage, 0.044 SiPMs/cm²
- Cold Electronics + PoF:
-1 CE box per 4 tiles $=\mathbf{\$ 0 . 5 \mathrm { M }}$ membrane $+\mathbf{\$ 0 . 9 \mathrm { M } \text { cathode } = \mathbf { \$ 1 . 5 M } \mathbf { M } , ~}$
- $\quad 0.1 \mathbf{k W}$ membrane $+\mathbf{0 . 2} \mathbf{~ k W}$ cathode $=\mathbf{0 . 3} \mathbf{~ k W}$
- Warm Electronics:
- \$180K membrane + \$60K cathode
$=\$ 0.25 \mathrm{M}$
- Total:
$-\$ 3.5 \mathrm{M}$ detector + \$2M electronics + \$5M labor + \$1.5M nonlabor $=\mathbf{\$ 1 2 . 0 M}$

Cathode(analog) $+25 \%$-Field Cage(analog)

- Detector:
- 192 Field Cage, 90 SiPMs, $60 \mathrm{~cm} \times 60 \mathrm{~cm}, \$ 4 \mathrm{~K}$ * 192
= \$0.78M
- 3.7% detector coverage, $0.025 \mathrm{SiPMs} / \mathrm{cm}^{2}$
- 320 Cathode, 160 SiPMs, $60 \mathrm{~cm} \times 60 \mathrm{~cm}, \$ 6.2 \mathrm{~K}$ * $320=\boldsymbol{\$ 2 . 0 M}$
- 14.8% coverage, 0.044 SiPMs/cm²
- Cold Electronics + PoF:
- 1 CE box per 4 tiles $=\mathbf{\$ 0 . 5 M}$ field-cage $+\mathbf{\$ 0 . 9 M}$ cathode $=\mathbf{\$ 1 . 5 M}$
- 0.1 kW field-cage $+\mathbf{0 . 2} \mathbf{~ k W}$ cathode $=\mathbf{0 . 3} \mathbf{~ k W}$
- Warm Electronics:
- \$120K field-cage + \$60K cathode
= \$0.18M
- Total:
$-\quad \$ 2.8 \mathrm{M}$ detector + \$2M electronics + \$5M labor + \$1.5M nonlabor $=\mathbf{\$ 1 1 . 5 M}$

Cathode(digital) $+25 \%$-Field Cage(digital)

- Detector:
- 192 Field Cage, 90 SiPMs, $60 \mathrm{~cm} \times 60 \mathrm{~cm}, \$ 4 \mathrm{~K}$ * $192=\$ 0.78 \mathrm{M}$
- 3.7% detector coverage, $0.025 \mathrm{SiPMs} / \mathrm{cm}^{2}$
- 320 Cathode, 160 SiPMs, $60 \mathrm{~cm} \times 60 \mathrm{~cm}, \$ 6.2 \mathrm{~K}$ * $320=\mathbf{\$ 2 . 0 M}$
- 14.8% coverage, $0.044 \mathrm{SiPMs} / \mathrm{cm}^{2}$
- Cold Electronics + PoF:
- 1 CE box per 36 tiles $=\mathbf{\$ 0 . 2 5 M}$ field-cage $+\mathbf{\$ 0 . 4} \mathbf{M}$ cathode $=\mathbf{\$ 0 . 6 5 M}$
- 0.05 kW field-cage $\mathbf{+} \mathbf{0 . 1 5} \mathbf{~ k W}$ cathode $=\mathbf{0 . 2} \mathbf{~ k W}$
- Warm Electronics:
- \$120K field-cage + \$60K cathode
$=\$ 0.18 \mathrm{M}$
- Total:
$-\quad \$ 2.8 \mathrm{M}$ detector + \$1M electronics + \$5M labor + \$1.5M nonlabor $=\$ 10.5 \mathrm{M}$

One Week Ago Slides

Approach to M\&S Estimates

- Steps:

1. Considered detector tile types
2. Considered cold electronics + power supply topologies
3. Tallied up warm electronics implications

- Note: no overhead and no spares considered on M\&S
- We think component prices are +/- 20\%

Outline

- Approach to M\&S estimates
- Approach to labor estimates
- Baseline proposal
- Risk assessment
- 2021 R\&D strategy

Approach to M\&S - Detector

- Five Detector tiles considered:

1. "high-efficiency Cathode" tile

- Qty. 320, 360 SiPMs, $3 \times 20 \mathrm{~cm} \times 60 \mathrm{~cm}, \$ 10.8 \mathrm{~K}$ * $320=\$ 3.5 \mathrm{M}$
- 14.8% coverage, $0.1 \mathrm{SiPMs} / \mathrm{cm}^{2}$, relative efficiency-factor=1

2. "economic Cathode" tile

- Qty. 320, 160 SiPMs, $60 \mathrm{~cm} \times 60 \mathrm{~cm}, \$ 6.2 \mathrm{~K}$ * $320=\$ 2.0 \mathrm{M}$
- 14.8% coverage, $0.044 \mathrm{SiPMs} / \mathrm{cm}^{2}$, relative efficiency-factor=0.9

3. "economic Field Cage" tile

- Qty. 768, 90 SiPMs, $60 \mathrm{~cm} \times 60 \mathrm{~cm}, \$ 4 \mathrm{~K}$ * $768=\mathbf{\$ 3 . 1 \mathrm { M }}$
- 14.6% detector coverage, $0.025 \mathrm{SiPMs} / \mathrm{cm}^{2}$

4. "horizontal-drift Membrane" tile

- Qty. 6000, 48 SiPMs, $40 \mathrm{~cm} \times 10 \mathrm{~cm}, \$ 1.2 \mathrm{~K}$ * $6000=\mathbf{\$ 7 . 1 M}$
- 15.4% detector coverage, $0.12 \mathrm{SiPMs} / \mathrm{cm}^{2}$

5. "economic Membrane" tile

- Qty. 800, 160 SiPMs, $60 \mathrm{~cm} \times 60 \mathrm{~cm}, \$ 6.2 \mathrm{~K}$ * $800=\$ 5.0 \mathrm{M}$
- 18.5% detector coverage, $0.044 \mathrm{SiPMs} / \mathrm{cm}^{2}$

Approach to M\&S - Cold Electronics + POF

- Four parameterized approaches considered:

1. "redundant digital" approach

- 1 CE box per tile, \$3.0M C. + \$7.2M FC. = \$10.2M
- 1.9 kW C. +4.5 kW FC. $=6.4 \mathrm{~kW}$

2. "economic digital" approach

- 1 CE box per 4 tiles, $\$ 1.1 \mathrm{M} \mathrm{C}+.\$ 2.6 \mathrm{M} \mathrm{FC}$. $=\$ 3.7 \mathrm{M}$
- 1.1 kW C. + 2.6 kW FC. $=3.7$ kW

3. "economic analog" approach

- 1 CE box per 4 tiles, $\$ 0.9 \mathrm{M} \mathrm{C}+.\$ 2.1 \mathrm{M} \mathrm{FC} . \quad=\$ 2.9 \mathrm{M}$
- 0.2 kW C. +0.4 kW FC. $=\mathbf{0 . 6} \mathrm{kW}$

4. "horizontal-drift-style Membrane" approach

- 1 CE box per 4 tiles
= \$1.4M
- 0.2 kW

Note - Reduced Field Cage

- Note: Field Cage M\&S can be reduced by eliminating tiles ($1 / 2,1 / 4$ considered). We have assumed 768 tiles over 8 rows (4 above $\&$ below cathode).
- If we assume 2 rows above \& below...
- 384 tiles
- Cold electronics + POF M\&S = \$1.0M FC.
- 0.22 kW FC.
- If we assume 1 row above \& below...
- 192 tiles
- Cold electronics + POF M\&S = $\$ 0.52 \mathrm{M} \mathrm{FC}$.
- 0.11 kW FC.

Note - Cold Electronics + POF

- Note: digital cold electronics cost (and thus power) can always be reduced in exchange for lower sampling/bit rate and longer analog signal runs. We have assumed 14-bits @ 80 Msps and 1 m runs.
- If we assume $<4 \mathrm{~m}$ analog runs \& $1 / 2$ digitizer data-rate...
- 1 CE box per 20 tiles, 16 FPGAs
- $\$ 0.5 \mathrm{M} \mathrm{C}+.\$ 1.2 \mathrm{M} \mathrm{FC}$. $=\$ 1.7 \mathrm{M}$
- 0.3 kW C. +0.6 kW FC. $=\mathbf{0 . 9} \mathrm{kW}$
- If we assume $<6 \mathrm{~m}$ analog runs $\& 1 / 4$ digitizer data-rate...
- 1 CE box per 36 tiles, 9 FPGAs
- $\$ 0.4 \mathrm{M} \mathrm{C}+.\$ 0.9 \mathrm{M}$ FC. $=\$ 1.3 \mathrm{M}$
- 0.15 kW C. +0.36 kW FC. $=\mathbf{0} \mathbf{5} \mathbf{~ k W}$

Approach to M\&S - Warm Electronics

- Assume $\$ 5 \mathrm{~K}$ board for each 12 CE boxes and $\$ 25 \mathrm{~K}$ crate for each 12 boards:

1. "redundant digital" approach

- \$210K C. + \$470K FC. = \$700K

2. "economic digital" approach

- \$60K C. + \$130K FC. = \$200K

3. "economic analog" approach

- \$60K C. + \$130K FC. = \$200K

4. "horizontal-drift-style Membrane" approach

- $\$ 135 \mathrm{~K}$ digitizer + $\$ 285$ power supplies $=\$ 420 \mathrm{~K}$

Approach to M\&S - Totals

- Added horizontal-drift style calibration/monitoring system:

1. "redundant digital" approach

- \$7.0M C. + \$11.0M FC.
= \$18.0M

2. "economic digital" approach

- \$3.5M C. $+\$ 6.0 \mathrm{M}$ FC.
$=\$ 9.5 \mathrm{M}$

3. "economic analog" approach

- \$3.3M C. + \$5.6M FC. = \$9.0M

4. "horizontal-drift-style Membrane" approach

- \$5.0M detector + \$2.0M electronics = \$7.0M
- Note: numbers are no overhead and no spares

Approach to Labor Estimates

- Phases from FY22 to FY28
- Based on fully-loaded FY21 labor rates, no escalation
- FY22/23: "prototype" long-term cold validation and QA/QC
- FY23: 1/20 th "pilot" module-0 @ ProtoDUNE 2
- FY24-28: "production"
- Production hours scaled by number of tiles
- 2:1 labor hour ratio for University:Lab
- No assumed international collaborators (rather in threat/opportunities)

1. "redundant digital" approach

- $55 \mathrm{k}+30 \mathrm{~K}$ hours \rightarrow \$3.2M Pr\&Pi\&C. + \$2.1M FC. $=\$ 5.3 \mathrm{M}$

2. "economic digital" approach

- $55 \mathrm{k}+30 \mathrm{~K}$ hours \rightarrow \$3.2M Pr\&Pi\&C. + \$2.1M FC. $=\$ 5.3 \mathrm{M}$

3. "economic analog" approach

- $55 \mathrm{k}+30 \mathrm{~K}$ hours \rightarrow \$3.2M Pr\&Pi\&C. + \$2.1M FC. $=\$ 5.3 \mathrm{M}$

4. "horizontal-drift-style Membrane" approach

- 80 K hours
= \$5.0M

FY22-28 WBS Estimates

1. "redundant digital" approach

- \$3.2M C. labor $+\$ 9.1 \mathrm{M} \mathrm{C}$. non-labor $=\$ 12.3 \mathrm{M}$
- \$5.3M C.\&FC. labor + \$20.4M C.\&FC. non-labor $=\mathbf{\$ 2 5 . 7} \mathbf{M}$

2. "economic digital" approach

- \$3.2M C. labor + \$5.6M C. non-labor
= \$8.9M
- \$5.3M C.\&FC. labor + \$11.9M C.\&FC. non-labor = \$17.2M

3. "economic analog" approach

- \$3.2M C. labor + \$5.4M C. non-labor
= \$8.7M
- \$5.3M C.\&FC. labor + \$11.4M C.\&FC. non-labor =\$16.7M

4. "horizontal-drift-style Membrane" approach

- \$4.9M labor + \$8.2M non-labor
= \$13.1 M

FY22-28 WBS Baseline Proposal

1. "redundant digital" approach

- \$3.2M C. labor $+\$ 9.1 \mathrm{M} \mathrm{C}$. non-labor $=\$ 12.3 \mathrm{M}$
- \$5.3M C.\&FC. labor + \$20.4M C.\&FC. non-labor $=\mathbf{\$ 2 5 . 7} \mathbf{M}$

2. "economic digital" approach

- \$3.2M C. labor + \$5.6M C. non-labor $=\$ 8.9 \mathrm{M}$
- \$5.3M C.\&FC. labor + \$11.9M C.\&FC. non-labor =\$17.2M

3. "economic analog" approach

- \$3.2M C. labor $+\$ 5.4 \mathrm{M} \mathrm{C}$. non-labor $=\$ 8.7 \mathrm{M}$
- \$5.3M C.\&FC. labor + \$11.4M C.\&FC. non-labor = \$16.7M

4. "horizontal-drift-style Membrane" approach

- \$4.9M labor
+ \$8.2M non-labor
$=\$ 13.1 \mathrm{M}$

FY22-28 WBS Risks

Type	Title	Cathode Point Estimate	FC Point Estimate	Probability
Threat	Insufficient Power-over-Fiber efficiency	\$413,404	\$992,171	35\%
Threat	Insufficient Data Compression achieved before cold waveform SERDES	\$1,309,404	\$3,142,571	35\%
Threat	Physics simulation shows additional detector coverage required	\$1,506,033	\$3,614,480	35\%
Opportunity	Commodity prices decrease	\$85,851	\$206,042	20\%
Threat	Commodity prices escalate faster than inflation	\$85,851	\$206,042	20\%
Opportunity	Insulation solution allows for warm electronics in cryostat	\$1,309,404	\$3,142,571	20\%
Threat	Components fail 30-year cold validation testing	\$1,000,000	\$500,000	20\%
Threat	Production mechanical packaging costs exceed estimated cost	\$80,000	\$192,000	50\%
Threat	Production assembly support M\&S costs exceed estimated cost	\$80,000	\$192,000	35\%
Threat	Production installation costs require additional costed technician labor	\$565,611	\$1,357,466	35\%
Threat	Photon detector electronics generates noise on the TPC wire readout	\$500,000	\$500,000	20\%
Opportunity	Additional collaborating funding agencies identified	\$2,000,000	\$2,000,000	35\%

FY22-28 WBS Risk Assessment

1. "redundant digital" approach relative risk 100%

- Cathode-only risk expected value $=\mathbf{\$ 2 . 4} \mathbf{M}$
- Cathode \& Field Cage risk expected value $=\mathbf{\$ 7 . 5 M}$

2. "economic digital" approach relative risk 100%

- Cathode-only risk expected value $=\mathbf{\$ 1 . 3 M}$
- Cathode \& Field Cage risk expected value $=\mathbf{\$ 4 . 3 M}$

3. "economic analog" approach relative risk 80\%

- Cathode-only risk expected value $=\mathbf{\$ 1 . 2 M}$
- Cathode \& Field Cage risk expected value =\$3.0M

4. "horizontal-drift-style Membrane" approach relative risk 70\%

- Membrane-only risk expected value =\$3.0M

2021 R\&D

2021 R\&D Strategy

- Target two prototype detector tiles for CERN cold box test:
- Each 160 SiPMs $60 \times 60 \mathrm{~cm}^{2}$; one SiPM vendor for each
- Target three prototype cold-electronics approaches:

1. "Cold analog" approach

- 80 SiPMs passive-ganging => 1 and/or 2 active-ganged analog waveforms

2. "Cold digital" approach

- 80 SiPMs passive-ganging => 2 active-ganged digitized waveforms
- 14-bits @ 80Msps

3. "Insulated digital" approach

- 80 SiPMs passive-ganging => 2 active-ganged digitized waveforms
- 280K thermostat. 14-bits @ 80Msps

2021 R\&D Component Strategy

- Team of experts launched on each component:
- xARAPUCA
- Passive Gang
- Active Gang
- Digital Tx
- Power Solutions
- Analog Tx
- SERDES / FPGA
- ADC
- Control Rx
- Sync Distribution
- Short-term cold tests and prototype integration steps planned
- Leaving for FY22...
- Packaging optimization
- Power consumption optimization
- Long-term (30-year) cold studies

2021 R\&D Milestone Timeline

Activity			FY21								FY22			
Subsystem or Task	Activity	Notes	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan
Project Management														
===>	Minor Milestone:	Select Control Rx Phase 1 candidate(s). Target 1 candidate.			x									
==->	Minor Milestone:	Select Control Rx Phase 2 candidate(s). Target 1 candidate.				x								
==>>	Minor Milestone:	Select Control Rx Phase 3 candidate(s). Target 1 candidate.					x							
==->	Milestone:	Select Control Rx Prototype final candidate.					X							
==->	Minor Milestone:	Select Sync Distribution Phase 1 candidate(s). Target 1 candidate.				X								
==->	Minor Milestone:	Select Sync Distribution Phase 2 candidate(s). Target 1 candidate.					X							
==->	Minor Milestone:	Select Sync Distribution Phase 3 candidate(s). Target 1 candidate.						x						
==->	Milestone:	Select Sync Distribution Prototype final candidate.						X						
==->	Minor Milestone:	Select Analog/Digital Waveform Optical Tx Phase 1 candidate(s). Target 1 candidate.		X										
==->	Minor Milestone:	Select Analog/Digital Waveform Optical Tx Phase 2 candidate(s). Target 1 candidate.			X									
==>>	Minor Milestone:	Select Analog/Digital Waveform Optical Tx Phase 3 candidate(s). Target 1 candidate.				X								
==>>	Minor Milestone:	Select SERDES Phase 1 candidate(s). Target 1 candidate.		X										
==->	Minor Milestone:	Select SERDES Phase 2 candidate(s). Target 1 candidate.			X									
==->	Minor Milestone:	Select SERDES Phase 3 candidate(s). Target 1 candidate.				X								
==->	Minor Milestone:	Select ADC Phase 1 candidate(s). Target 1 candidate.		X										
==->	Minor Milestone:	Select ADC Phase 2 candidate(s). Target 1 candidate.			X									
==->	Minor Milestone:	Select ADC Phase 3 candidate(s). Target 1 candidate.				X								
==->	Major Milestone:	Pair-wise integration of most promising phase 1 candidate components and Power-over-fiber.				X								
==->	Milestone:	Analog front-end integration Prototype in cold validated.					x							
==->	Milestone:	SERDES Tx integration Prototype in cold validated.					X							
==->	Milestone:	SERDES Rx integration Prototype in cold validated.					X							
==->	Major Milestone:	Downselect ADC/SERDES/digital Tx or analog Tx Prototype final candidate.					X							
==->	Major Milestone:	ADC+SERDES+Optical Rx/Tx integration Prototype OR Analog Optical Tx integration Prototype in cold validated.						x						
==->	Milestone:	1-channel waveform readout integration Prototype in cold validated.						X						
==->	Major Milestone:	Full modules waveform readout integration Prototype in cold validated.							x					
==->	Major Milestone:	Two synchronized integration Prototype modules in cold validated.							X					
==->	Milestone:	Two synchronized integration Prototype modules in cold <10KV plane validated. Or documented as not needed.							X					
==->	Major Milestone:	Two Prototype v1 modules installed at CERN Cold Box Test Part-A.								X				
==->	Major Milestone:	Two Prototype v2 modules installed at CERN Cold Box Test Part-B.										x		
==->	Major Milestone:	Synchronized waveform readout of two Prototype modes in CERN Cold Box Test.										X		

2021 R\&D WBS

- Estimate through CERN Cold Box Test (i.e. FY21-22)
- Labor = \$850K
- Non-labor $=\$ 190 \mathrm{~K}$
- Total $=\$ 1 \mathrm{M}$
- 1:1 labor hour ratio for University:Lab
- Starting BCR process this week with Janet

