

DUNE FD-2 PDS Baseline WBS Sketch

19 April 2021 Ryan Rivera DUNE-US FD-2 PDS Level 2 Manager

Membrane Only

- Detector:
 - Qty. 720, 160 SiPMs, 60cm x 60cm, \$5.1K * 720 = \$3.7M
 - 16.6% detector coverage, 0.044 SiPMs/cm²
- Cold Electronics:
 - 1 CE box per 4 tiles

= \$1.4M

- 0.2 kW
- Warm Electronics:
 - \$135K digitizer + \$285 power supplies

= \$420K

- Total:
 - \$3.7M detector + \$2M electronics + \$5M labor + \$1.5M non-labor= \$12.2M

Note: M&S is no overhead and no spares. Labor is fully-loaded.

Cathode(analog) + 40%-Membrane

- Detector:
 - 288 Membrane, 160 SiPMs, 60cm x 60cm, \$5.1K * 288 = \$1.5M
 - 6.6% detector coverage, 0.044 SiPMs/cm²
 - 320 Cathode, 160 SiPMs, 60cm x 60cm, \$6.2K * 320 = \$2.0M
 - 14.8% coverage, 0.044 SiPMs/cm²
- Cold Electronics + PoF:
 - 1 CE box per 4 tiles = \$0.5M membrane + \$0.9M cathode = \$1.5M
 - 0.1 kW membrane + 0.2 kW cathode = 0.3 kW
- Warm Electronics:
 - \$180K membrane + \$60K cathode = \$0.25M
- Total:
 - \$3.5M detector + \$2M electronics + \$5M labor + \$1.5M non-labor= \$12.0M

Cathode(analog) + 25%-Field Cage(analog)

- Detector:
 - 192 Field Cage, 90 SiPMs, 60cm x 60cm, \$4K * 192 = \$0.78M
 - 3.7% detector coverage, 0.025 SiPMs/cm²
 - 320 Cathode, 160 SiPMs, 60cm x 60cm, \$6.2K * 320 = \$2.0M
 - 14.8% coverage, 0.044 SiPMs/cm²
- Cold Electronics + PoF:
 - 1 CE box per 4 tiles = \$0.5M field-cage + \$0.9M cathode = \$1.5M
 - 0.1 kW field-cage + 0.2 kW cathode = 0.3 kW
- Warm Electronics:
 - \$120K field-cage + \$60K cathode = \$0.18M
- Total:
 - \$2.8M detector + \$2M electronics + \$5M labor + \$1.5M non-labor= \$11.5M

Cathode(digital) + 25%-Field Cage(digital)

- Detector:
 - 192 Field Cage, 90 SiPMs, 60cm x 60cm, \$4K * 192 = \$0.78M
 - 3.7% detector coverage, 0.025 SiPMs/cm²
 - 320 Cathode, 160 SiPMs, 60cm x 60cm, \$6.2K * 320 = \$2.0M
 - 14.8% coverage, 0.044 SiPMs/cm²
- Cold Electronics + PoF:
 - 1 CE box per 36 tiles = \$0.25M field-cage + \$0.4M cathode= \$0.65M
 - 0.05 kW field-cage + 0.15 kW cathode = 0.2 kW
- Warm Electronics:
 - \$120K field-cage + \$60K cathode = \$0.18M
- Total:
 - \$2.8M detector + \$1M electronics + \$5M labor + \$1.5M non-labor= \$10.5M

One Week Ago Slides

Approach to M&S Estimates

- Steps:
 - 1. Considered detector tile types
 - 2. Considered cold electronics + power supply topologies
 - 3. Tallied up warm electronics implications
- Note: no overhead and no spares considered on M&S
- We think component prices are +/- 20%

Outline

- Approach to M&S estimates
- Approach to labor estimates
- Baseline proposal
- Risk assessment
- 2021 R&D strategy

Approach to M&S - Detector

- Five Detector tiles considered:
 - 1. "high-efficiency Cathode" tile
 - Qty. 320, 360 SiPMs, 3 x 20cm x 60cm, \$10.8K * 320 = \$3.5M
 - 14.8% coverage, 0.1 SiPMs/cm², relative efficiency-factor=1
 - 2. "economic Cathode" tile
 - Qty. 320, 160 SiPMs, 60cm x 60cm, \$6.2K * 320 = \$2.0M
 - 14.8% coverage, 0.044 SiPMs/cm², relative efficiency-factor=0.9
 - 3. "economic Field Cage" tile
 - Qty. 768, 90 SiPMs, 60cm x 60cm, \$4K * 768 = \$3.1M
 - 14.6% detector coverage, 0.025 SiPMs/cm²
 - 4. "horizontal-drift Membrane" tile
 - Qty. 6000, 48 SiPMs, 40cm x 10cm, \$1.2K * 6000 = \$7.1M
 - 15.4% detector coverage, 0.12 SiPMs/cm²
 - 5. "economic Membrane" tile
 - Qty. 800, 160 SiPMs, 60cm x 60cm, \$6.2K * 800 = \$5.0M
 - 18.5% detector coverage, 0.044 SiPMs/cm²

Approach to M&S – Cold Electronics + POF

- Four parameterized approaches considered:
 - 1. "redundant digital" approach
 - 1 CE box per tile, \$3.0M C. + \$7.2M FC. = \$10.2M
 - 1.9 kW C. + 4.5 kW FC. = 6.4 kW
 - 2. "economic digital" approach
 - 1 CE box per 4 tiles, \$1.1M C. + \$2.6M FC. = \$3.7M
 - 1.1 kW C. + 2.6 kW FC. = 3.7 kW
 - 3. "economic analog" approach
 - 1 CE box per 4 tiles, \$0.9M C. + \$2.1M FC. = \$2.9M
 - 0.2 kW C. + 0.4 kW FC. = 0.6 kW
 - 4. "horizontal-drift-style Membrane" approach
 - 1 CE box per 4 tiles = \$1.4M
 - 0.2 kW

Note – Reduced Field Cage

- **Note:** Field Cage M&S can be reduced by eliminating tiles (1/2, 1/4 considered). We have assumed 768 tiles over 8 rows (4 above & below cathode).
 - If we assume 2 rows above & below...
 - 384 tiles
 - Cold electronics + POF M&S = \$1.0M FC.
 - 0.22 kW FC.
 - If we assume 1 row above & below...
 - 192 tiles
 - Cold electronics + POF M&S = \$0.52M FC.
 - 0.11 kW FC.

Note - Cold Electronics + POF

- Note: digital cold electronics cost (and thus power) can always be reduced in exchange for lower sampling/bit rate and longer analog signal runs. We have assumed 14-bits @ 80Msps and 1m runs.
 - If we assume <4m analog runs & ½ digitizer data-rate...</p>
 - 1 CE box per 20 tiles, 16 FPGAs
 - \$0.5M C. + \$1.2M FC. = **\$1.7M**
 - 0.3 kW C. + 0.6 kW FC. = 0.9 kW

- If we assume <6m analog runs & ¼ digitizer data-rate...
 - 1 CE box per 36 tiles, 9 FPGAs
 - \$0.4M C. + \$0.9M FC. = **\$1.3M**
 - 0.15 kW C. + 0.36 kW FC. = 0.5 kW

Approach to M&S – Warm Electronics

- Assume \$5K board for each 12 CE boxes and \$25K crate for each 12 boards:
 - 1. "redundant digital" approach
 - \$210K C. + \$470K FC. = **\$700K**
 - 2. "economic digital" approach
 - \$60K C. + \$130K FC. = **\$200K**
 - 3. "economic analog" approach
 - \$60K C. + \$130K FC. = **\$200K**
 - 4. "horizontal-drift-style Membrane" approach
 - \$135K digitizer + \$285 power supplies = **\$420K**

Approach to M&S – Totals

- Added horizontal-drift style calibration/monitoring system:
 - 1. "redundant digital" approach

```
• $7.0M C. + $11.0M FC. = $18.0M
```

- 2. "economic digital" approach
 - \$3.5M C. + \$6.0M FC. = **\$9.5M**
- 3. "economic analog" approach

```
• $3.3M C. + $5.6M FC. = $9.0M
```

- 4. "horizontal-drift-style Membrane" approach
 - \$5.0M detector + \$2.0M electronics = \$7.0M
- Note: numbers are no overhead and no spares

Approach to Labor Estimates

- Phases from FY22 to FY28
 - Based on fully-loaded FY21 labor rates, no escalation
 - FY22/23: "prototype" long-term cold validation and QA/QC
 - FY23: 1/20th "pilot" module-0 @ ProtoDUNE 2
 - FY24-28: "production"
 - Production hours scaled by number of tiles
 - 2:1 labor hour ratio for University:Lab
 - No assumed international collaborators (rather in threat/opportunities)
 - 1. "redundant digital" approach
 - 55k + 30K hours → \$3.2M Pr&Pi&C. + \$2.1M FC. = \$5.3M
 - 2. "economic digital" approach
 - 55k + 30K hours → \$3.2M Pr&Pi&C. + \$2.1M FC. = **\$5.3M**
 - 3. "economic analog" approach
 - 55k + 30K hours → \$3.2M Pr&Pi&C. + \$2.1M FC. = **\$5.3M**
 - 4. "horizontal-drift-style Membrane" approach
 - 80K hours = **\$5.0M**

FY22-28 WBS Estimates

1. "redundant digital" approach

- \$3.2M C. labor + \$9.1M C. non-labor = **\$12.3M**
- \$5.3M C.&FC. labor + \$20.4M C.&FC. non-labor = **\$25.7M**

2. "economic digital" approach

- \$3.2M C. labor + \$5.6M C. non-labor = **\$8.9M**
- \$5.3M C.&FC. labor + \$11.9M C.&FC. non-labor = **\$17.2M**

3. "economic analog" approach

- \$3.2M C. labor + \$5.4M C. non-labor = **\$8.7M**
- \$5.3M C.&FC. labor + \$11.4M C.&FC. non-labor = **\$16.7M**

4. "horizontal-drift-style Membrane" approach

• \$4.9M labor + \$8.2M non-labor = \$13.1M

FY22-28 WBS Baseline Proposal

- 1. "redundant digital" approach
 - \$3.2M C. labor + \$9.1M C. non-labor = **\$12.3M**
 - \$5.3M C.&FC. labor + \$20.4M C.&FC. non-labor = **\$25.7M**
- 2. "economic digital" approach
 - \$3.2M C. labor + \$5.6M C. non-labor = **\$8.9M**
 - \$5.3M C.&FC. labor + \$11.9M C.&FC. non-labor = **\$17.2M**
- 3. "economic analog" approach
 - \$3.2M C. labor + \$5.4M C. non-labor = **\$8.7M**
 - \$5.3M C.&FC. labor + \$11.4M C.&FC. non-labor = **\$16.7M**
- 4. "horizontal-drift-style Membrane" approach
 - \$4.9M labor + \$8.2M non-labor = \$13.1M

FY22-28 WBS Risks

Туре	Title	Cathode Point Estimate	FC Point Estimate	Probability
<u> 1 </u>	THE	Cathode Font Estimate	Te Fonte Estimate	rosusincy
Threat	Insufficient Power-over-Fiber efficiency	\$413,404	\$992,171	. 35%
Threat	Insufficient Data Compression achieved before cold waveform SERDES	\$1,309,404	\$3,142,571	. 35%
Threat	Physics simulation shows additional detector coverage required	\$1,506,033	\$3,614,480	35%
Opportunity	Commodity prices decrease	\$85,851	\$206,042	20%
Threat	Commodity prices escalate faster than inflation	\$85,851	\$206,042	20%
Opportunity	Insulation solution allows for warm electronics in cryostat	\$1,309,404	\$3,142,571	. 20%
Threat	Components fail 30-year cold validation testing	\$1,000,000	\$500,000	20%
Threat	Production mechanical packaging costs exceed estimated cost	\$80,000	\$192,000	50%
Threat	Production assembly support M&S costs exceed estimated cost	\$80,000	\$192,000	35%
Threat	Production installation costs require additional costed technician labor	\$565,611	\$1,357,466	35%
Threat	Photon detector electronics generates noise on the TPC wire readout	\$500,000	\$500,000	20%
Opportunity	Additional collaborating funding agencies identified	\$2,000,000	\$2,000,000	35%

FY22-28 WBS Risk Assessment

- 1. "redundant digital" approach relative risk 100%
 - Cathode-only risk expected value = \$2.4M
 - Cathode & Field Cage risk expected value = \$7.5M
- 2. "economic digital" approach relative risk 100%
 - Cathode-only risk expected value = \$1.3M
 - Cathode & Field Cage risk expected value = \$4.3M
- 3. "economic analog" approach relative risk 80%
 - Cathode-only risk expected value = \$1.2M
 - Cathode & Field Cage risk expected value = \$3.0M
- 4. "horizontal-drift-style Membrane" approach relative risk 70%
 - Membrane-only risk expected value = \$3.0M

2021 R&D

2021 R&D Strategy

- Target <u>two</u> prototype detector tiles for CERN cold box test:
 - Each 160 SiPMs 60x60cm²; one SiPM vendor for each
- Target <u>three</u> prototype cold-electronics approaches:
 - 1. "Cold analog" approach
 - 80 SiPMs passive-ganging => 1 and/or 2 active-ganged analog waveforms
 - 2. "Cold digital" approach
 - 80 SiPMs passive-ganging => 2 active-ganged digitized waveforms
 - 14-bits @ 80Msps
 - 3. "Insulated digital" approach
 - 80 SiPMs passive-ganging => 2 active-ganged digitized waveforms
 - 280K thermostat. 14-bits @ 80Msps

2021 R&D Component Strategy

- Team of experts launched on each component:
 - xARAPUCA
 - Passive Gang
 - Active Gang
 - Digital Tx
 - Power Solutions

- Analog Tx
- SERDES / FPGA
- ADC
- Control Rx
- Sync Distribution
- Short-term cold tests and prototype integration steps planned
- Leaving for FY22...
 - Packaging optimization
 - Power consumption optimization
 - Long-term (30-year) cold studies

2021 R&D Milestone Timeline

	Activity			FY21								FY22				
Subsystem or Task	Activity	Notes	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan		
Project Management																
===>	Minor Milestone:	Select Control Rx Phase 1 candidate(s). Target 1 candidate.			X											
===>	Minor Milestone:	Select Control Rx Phase 2 candidate(s). Target 1 candidate.				X										
===>	Minor Milestone:	Select Control Rx Phase 3 candidate(s). Target 1 candidate.					Х									
===>	Milestone:	Select Control Rx Prototype final candidate.					X									
===>	Minor Milestone:	Select Sync Distribution Phase 1 candidate(s). Target 1 candidate.				Х										
===>	Minor Milestone:	Select Sync Distribution Phase 2 candidate(s). Target 1 candidate.					Х									
===>	Minor Milestone:	Select Sync Distribution Phase 3 candidate(s). Target 1 candidate.						Х								
===>	Milestone:	Select Sync Distribution Prototype final candidate.						Х								
===>	Minor Milestone:	Select Analog/Digital Waveform Optical Tx Phase 1 candidate(s). Target 1 candidate.		Х												
===>	Minor Milestone:	Select Analog/Digital Waveform Optical Tx Phase 2 candidate(s). Target 1 candidate.			X											
===>	Minor Milestone:	Select Analog/Digital Waveform Optical Tx Phase 3 candidate(s). Target 1 candidate.				Х										
===>	Minor Milestone:	Select SERDES Phase 1 candidate(s). Target 1 candidate.		Х												
===>	Minor Milestone:	Select SERDES Phase 2 candidate(s). Target 1 candidate.			X											
===>	Minor Milestone:	Select SERDES Phase 3 candidate(s). Target 1 candidate.				Х										
===>	Minor Milestone:	Select ADC Phase 1 candidate(s). Target 1 candidate.		Х												
===>	Minor Milestone:	Select ADC Phase 2 candidate(s). Target 1 candidate.			X											
===>	Minor Milestone:	Select ADC Phase 3 candidate(s). Target 1 candidate.				Х										
===>	Major Milestone:	Pair-wise integration of most promising phase 1 candidate components and Power-over-fiber.				Х										
===>	Milestone:	Analog Front-end integration Prototype in cold validated.					Х									
===>	Milestone:	SERDES Tx integration Prototype in cold validated.					Х									
===>	Milestone:	SERDES Rx integration Prototype in cold validated.					Х									
===>	Major Milestone:	Downselect ADC/SERDES/digital Tx or analog Tx Prototype final candidate.					X									
===>	Major Milestone:	ADC+SERDES+Optical Rx/Tx integration Prototype OR Analog Optical Tx integration Prototype in cold validated.						Х								
===>	Milestone:	1-channel waveform readout integration Prototype in cold validated.						Х								
===>	Major Milestone:	Full modules waveform readout integration Prototype in cold validated.							Х							
===>	Major Milestone:	Two synchronized integration Prototype modules in cold validated.							Х							
===>	Milestone:	Two synchronized integration Prototype modules in cold <10KV plane validated. Or documented as not needed.							Х							
===>	Major Milestone:	Two Prototype v1 modules installed at CERN Cold Box Test Part-A.								Х						
===>	Major Milestone:	Two Prototype v2 modules installed at CERN Cold Box Test Part-B.										Х				
===>	Major Milestone:	Synchronized waveform readout of two Prototype modes in CERN Cold Box Test.										Х				
		-				_						$\overline{}$	$\overline{}$			

2021 R&D WBS

- Estimate through CERN Cold Box Test (i.e. FY21-22)
 - Labor = \$850K
 - Non-labor = \$190K
 - Total = \$1M
- 1:1 labor hour ratio for University:Lab
- Starting BCR process this week with Janet