

PINGU receiving accelerator neutrinos

Jian Tang*

* Institute of Theoretical Physics and Astrophysics, Würzburg University, Germany

Oct. 24th, 2011 Neutrino Working Group Meeting@Fermilab In collaboration with Walter Winter.

Thanks all in PINGU collaboration, especially Jason Koskinen.

Reference: Jian Tang and Walter Winter, "Requirements for a New Detector at the South Pole Reiceiving an Accelerator Neutrino Beam", to appear soon.

Outline

2 Requirements of PINGU-I for accelerator neutrino experiments

PINGU-I detector with unprecedented fiducial volume

The realistic $V_{\rm eff}$ by MC from Jason Koskinen. See descriptions in Carsten Rott's talk.

For ρ of the Earth's mantle, $E_{\rm res} \simeq 7 \,{
m GeV}$. For ρ of the Earth's (outer) core, $E_{\rm res} \simeq 3 \,{
m GeV}$.

Proposals for future's accelerator neutrino experiment Beta beam experiment:

 $u_{\mu} \text{ appearance: } \nu_{e} \rightarrow \underbrace{\nu_{\mu}}_{\mu} \text{ for }^{18} \text{Ne or }^{8} \text{B stored },$ $\bar{\nu}_{\mu} \text{ appearance: } \bar{\nu}_{e} \rightarrow \underbrace{\bar{\nu}_{\mu}}_{\mu} \text{ for }^{18} \text{He or }^{8} \text{Li stored }.$

 \clubsuit^{18} Ne and 6 He accelerated to $\gamma=350$ with a 500 kton WC detector at a baseline of 650 km \clubsuit^{8} B and 8 Li accelerated to $\gamma=656$ and $\gamma=390$, respectively. Maximal gamma allowed by the upgraded SPS at CERN? Detector at 7000 km. ref: 0907.2379 [hep-ph]

Neutrino factory experiment:

$$\begin{split} \nu_{\mu} \text{ appearance: } \nu_{e} \rightarrow \boxed{\nu_{\mu}} \text{ for } \mu^{+} \text{ stored } (-) \,, \\ \bar{\nu}_{\mu} \text{ disappearance: } \bar{\nu}_{\mu} \rightarrow \boxed{\bar{\nu}_{\mu}} \text{ for } \mu^{+} \text{ stored } (-) \,. \end{split}$$

♠A two-baseline HENF: $E_{\mu} = 25 \text{ GeV}$ with a $L_1 \simeq 4000 \text{ km}$ and a $L_2 \simeq 7500 \text{ km}$ baseline. ♠A one-baseline LENF: $E_{\mu} = 10 \text{ GeV}$ with a baseline of $L \simeq 2200 \text{ km}$.

Superbeam experiment:

 $u_e \text{ appearance: } \nu_\mu \to \boxed{\nu_e} \text{ for } \pi^+ \text{ decays },$ $\nu_\mu \text{ disappearance: } \nu_\mu \to \boxed{\nu_\mu} \text{ for } \pi^+ \text{ decays }.$

♠Take the 120 GeV configuration of LBNE as an example.

♠200 kton WC detector at 1300 km.

Requirements of PINGU-I for accelerator neutrino experiments

Beta beam experiment (replace the magic baseline by PINGU):

- \bigcirc Good u_{μ} flavor identification and $(
 u_{e}\,,
 u_{ au})$ "misID" $\lesssim 1\%$
- \bigcirc Energy threshold $E_{\rm th} \lesssim 5$ GeV.
- \bigcirc Energy resolution better than $50\% \cdot E$.
- \bigcirc Effective fiducial volume $V_{\rm eff} \gtrsim 1$ Mton

Neutrino factory experiment (replace the magic baseline by PINGU or use a single baseline LENF by PINGU):

- \bigcirc Good ν_{μ} flavor identification and (ν_{e}, ν_{τ}) "misID" $\lesssim 1\%$
- \bigcirc Energy threshold $E_{\rm th} \lesssim 2$ GeV.
- \bigcirc Energy resolution better than $10\% \cdot E$ (No CID!).
- \bigcirc Effective fiducial volume $V_{\text{eff}} \gtrsim 5$ Mton

Superbeam experiment (with a single baseline PINGU):

- \bigcirc Good ν_e flavor identification and (ν_{μ}, ν_{τ}) "misID" $\lesssim 1\%$ (HARD!)
- \bigcirc Energy threshold $E_{\rm th} \lesssim 2$ GeV.
- \bigcirc Energy resolution better than $50\% \cdot E$.
- \bigcirc Effective fiducial volume $V_{\rm eff} \gtrsim 5$ Mton

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Summary

UNIVERSITÄI WÜRZBURG

Julius-Maximilians

- if θ_{13} is large, θ_{13} and δ_{CP} can, under optimistic assumptions, be measured with a single baseline to PINGU-I detector.
- if θ₁₃ is small, PINGU-I may replace the long baseline for the mass hierarchy measurement or degeneracy resolutions at BB (ROBUST)

or apply to NF with a good energy resolution.

3

イロト イポト イヨト イヨト

Backup

Values used in the previous slides.

Experiment	Setups	misID	misIDtracks	$E_{\rm th}$	Energy res.	Fid. mass
Beta beam	BB_{bm}, BB_{bm}^*	0.001	n/a	2 GeV	$50\% \cdot E$	5 Mt
Neutrino factory	NF_{bm}, NF_{bm}^*	0.001	n/a	2 GeV	$10\% \cdot E$	5 Mt
Superbeam	SB [*] _{bm}	0.01	0.01	2 GeV	$20\% \cdot E$	5 Mt

LENF with PINGU-I (L³NF yet to be tested)

э