A High Resolution **v**-Experiment at the Intensity Frontier

The familiar, beautiful neighborhood
Cross-section; Sum rules; Isospin Physics
Sin**2(Ow): (special HE run) precision commensurate with Colliders
Heavy neutrinos

Rewriting the V-text-book

What we need:

* Flux

 $V\mu \leftrightarrow \mu$ -; $Ve \leftrightarrow e$ -; and anti- $V\mu \leftrightarrow \mu$ +; anti- $Ve \leftrightarrow e$ +

Absolute and Relative flux ($E\nu$); (anti)V- \mathcal{N} ucleus

* Energy Scale

Charged-particle momentum; 4-Calorimetric Coverage; missing- P_T

* Measurement of Secondary $\pi^{0/+/-}$ in ν -Hadron-shower (66 & NC) Proton/K / π ID

***** ~100 Million **V**μ-66

it follows:

* Light, `Transparent' Tracker

~0.1 gm/cm^3 with electron-ID (TR-capability); γ

* B-Field

* 4π -Goverage: Galorimeter and μ

Absolute Neutrino Flux in LBNE & Beyond

by Xinchun Tian

* Muon Sample: $V_{mu} + e \rightarrow V_e + \mu - (Single, forward \mu -: IMD)$

[™]Elegant, Simple: but steep, though calculable, threshold $E_{V} \ge I I$ GeV

Systematic advantage of STT (HIRESMNU) lies in avoiding the error that the CCFR or CHARM-II incurred in extrapolating the background to the signal ζ=Pe(1-cosθe) ≤Cut ⇒ $\sigma(IMD)$ known ⇒ Absolute- $\phi(V_x)$ at High-Ev (11 ≤Ev≤ 30 GeV)

* *Electron Sample:* Vx + e-» Vx + e- (Single, forward e-: Elas)

[№]92% are from V_{mu} Using Collider measurements, the Weak Mixing Angle (0.23) at Q~0.1 GeV, known to ≤1% precision, $\Rightarrow \sigma(V_xe-NC)$ known \Rightarrow Absolute- $\phi(V_x)$ at Low-Ev (1 ≤ Ev ≤ 5 GeV) Redeem our Lledge:

* Systematics for Oscillation

* $\mathcal{P}(\nu_{\mu} \gg \nu_{e})$ down to 10^-4

Need external measurements of (K^+/π^+) , (K^-/K^+) , (K^0/K^+)

* $\mathscr{P}(\mathbf{v}_{\mu} \gg \mathbf{v}_{\tau})$ down to <10^-5 \leftarrow \mathscr{N} High Energy run

* Precision measurements

A program as rich in Physics as those of collider experiments: > 100 papers