Measuring the Absolute ν_{μ} Flux using a Fine-Grain Straw-tube Tracker

Xinchun Tian

November 10, 2011

To conduct precision oscillation physics at the intensity frontier, such as LBNE in Project-X era, is that the ν_{μ} and $\bar{\nu}_{\mu}$ charged-current cross-sections be known to $\simeq 3 - 4\%$ precision. An in-situ determination of the absolute ν_{μ} flux with a commensurate precision will be highly desirable.

We propose a method of measuring the absolute ν_{μ} -flux using the ν_{μ} -e neutral current (NC) scattering. The cross-section of this process is known to be $\simeq 1\%$ precision using the weak-mixing angle measured at the colliders. Thus, if the backgrounds can be drastically reduced and the remaining background constrained, then ν_{μ} -e NC scattering will provide a means to measure the absolute flux.

The fine-grain straw-tube tracker (STT), currently a candidate for the LBNE near-detector, can accomplish a ν_{μ} -e NC scattering with $\simeq 3\%$ precision. (See S.R.Mishra's contribution.) The STT is capable of measuring ν_{μ} -, $\bar{\nu}_{\mu}$ -, ν_{e} -, and $\bar{\nu}_{e}$ -CC with very high precision. To identify the ν_{μ} -e NC events, we isolate interactions having a single negative track, require that the track be an electron using the transition-radiation measurements, and finally require that the track be collinear with the incident neutrino, i.e. $\zeta_{e} = E_{e} \times (1 - \cos \theta_{e}) < 0.001$. The background, mostly from ν -nucleon NC where the only observable is an e^{-} from an asymmetric photon decay, is reduced to $< 10^{-5}$ whereas the 64% of the signal survive. Our estimate indicates that with a 700 kW beam and a five year exposure, a sample of > 1500 signal events can be measured with a small, and benign, background.