International Context

Patrick Huber

Center for Neutrino Physics at Virginia Tech

Intensity Frontier Workshop: neutrino working group pre-meeting October 24, 2011, FNAL, Batavia, IL

P. Huber – VT-CNP – p. 1

The Issue

If $\sin^2 2\theta_{13} > 0.02$, as hinted by recent data *e.g.* Fogli *et al.*, what are the implications for future facilities?

- Are new experiments beyond NOvA and T2K necessary?
- Will the mass hierarchy have been determined by someone else?
- Will the CPV have been discovered by someone else?
- Are superbeams sufficient?

NB – large θ_{13} also implies that new physics will sit on top of a large SM background, thus systematics will be a key issue for BSM searches

MH & CPV w/o new exps.?

PH, M. Lindner, T. Schwetz, W. Winter, JHEP 11 044 (2009), arXiv:0907.1896. Includes Project X and T2K running at 1.7 MW.

Superbeams

Neutrino beam from π -decay

They are called 'super'

- beam power $> 1 \,\mathrm{MW}$
- detectors mass > 100 kt
- running time of the experiment ~ 10 years
- price

Challenges

- beam power $\sim 1\,\mathrm{MW}$
- detectors mass $\sim 100 \, \mathrm{kt}$
- running time of the experiment ~ 10 years
- price

And at large θ_{13} – systematics & precision

Neutrino Factory

This requires a detector which can distinguish μ^+ from $\mu^- \Rightarrow$ magnetic field of around 1T

- above 3 GeV iron calorimeter like MINOS
- below 3 GeV magnetized, totally active, fine grained scintillator

Challenges

- muon production (MERIT)
- muon cooling (MICE, MuCool)
- muon acceleration (EMMA)

All these steps are necessary for a muon collider, too. Active R&D effort, which will yield a reference design report by 2013.

International Design Study for a Neutrino Factory (IDS-NF): www.ids-nf.org

see also Alan's talk

B-beams

Challenges

- isotope production
- acceleration sufficiently high neutrino energies
- radioactive beams activation of equipment
- storage ring high ion densities, size
- no ν_{μ} disappearance, thus no θ_{23} measurement

Are superbeams enough?

Are superbeams enough?

SB reach
0.15-0.77CPF of
of
OBB reach
0.6-0.75CPF of
of
ONF reaches
0.85-0.9CPF of
of

NF best for **all** values of θ_{13} !

Are superbeams enough?

 $\Delta \delta \simeq \frac{1}{12} (1 - \text{CPF})$ SB $\Delta \delta = 7^{\circ} - 25^{\circ}$ NF $\Delta \delta = 3^{\circ} - 5^{\circ}$

BUT, wildly different assumptions about systematics – still NF outperforms all other options

This requires a MUCH more detailed analysis! For more on systematics, see Jorge's talk

Low Luminosity Low energy Neutrino Factory

 L^3NF

1/20-1/10 of luminosity - L³NF as good as the best SB

⇒ Start somewhere between 1/20 and 1/10 ⇒ Use existing proton infrastructure ⇒ Upgrade to full luminosity

Summary

- New facilities are indispensable to fully exploit the discovery of neutrino oscillation
- CP violation is never easy to measure even for the largest values of θ_{13}
- Mass hierarchy needs long baseline and multi-GeV beams
- In the large θ_{13} case systematics will be key!

All approaches requite multi-MW proton beams!

Given sufficient resources, it seems likely that neutrino mixing can be quantitatively understood at a level similar to the quark sector, which ultimately will allow us to shed light onto the flavor puzzle.

References

- LBNE curves are provided by Sam Zeller as defined by the LBNE physics working group as of fall 2010 and have been computed by Lisa Whitehead
- LBNO curves are taken from Agarwalla, *et al.* arXiv:1109.6526 and have been provided by Tracey Li
- T2HK curves are taken from the T2HK LOI.
- SPL and beta beam curves (BB100) are taken from the Eurov report arXiv:1005.3146
- Neutrino Factory curves are taken from the IDS-NF IDR
- 2025 data from PH, *et al*. JHEP 11 044 (2009).
- current 3σ lower limit on $\sin^2 2\theta_{13}$, Fogli, *et al.* arXiv:1106.6028

Luminosity of the Setups

name	baseline	type	mass	power	sec. in year	years	sig. syst.
LBNE	1300	WC/LAr	200/33	0.7MW	2×10^7	5+5	1%
LBNE+ Pro. X	1300	WC/LAr	200/33	2.3MW	2×10^7	5+5	1%
LBNO 33kt	2300	LAr	33	1.7MW	1.7×10^7	5+5	5%
LBNO 100kt	2300	LAr	100	1.7MW	$1.7 imes 10^7$	5+5	5%
T2HK	295	WC	560	1.66MW	1×10^7	2.1+2.9	5%
SPL	130	WC	440	4MW	1×10^7	2+8	2%
IDS-NF 2.0	4000+7500	MIND	100+50	4MW	1×10^7	5+5	1.4%
MIND LE	2000	MIND	100	4MW	1×10^7	5+5	1.4%