Double Beta Decay: a brief summary

*G.G*ratta Physics Dept Stanford University

Double-beta decay:

a second-order process only detectable if first order beta decay is energetically forbidden

Candidate nuclei with Q>2 MeV

Candidate	Q	Abund.	
	(MeV)	(%)	

⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187
⁷⁶ Ge→ ⁷⁶ Se	2.040	7.8
⁸² Se→ ⁸² Kr	2.995	9.2
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8
$^{100}Mo \rightarrow ^{100}Ru$	3.034	9.6
¹¹⁰ Pd→ ¹¹⁰ Cd	2.013	11.8
$^{116}Cd \rightarrow ^{116}Sn$	2.802	7.5
¹²⁴ Sn→ ¹²⁴ Te	2.228	5.64
¹³⁰ Te→ ¹³⁰ Xe	2.533	34.5
¹³⁶ Xe→ ¹³⁶ Ba	2.479	8.9
$^{150}\text{Nd}{\rightarrow}^{150}\text{Sm}$	3.367	5.6

There are two varieties of $\beta\beta$ decay

2v mode: a conventional 2nd order process in nuclear physics

Neutrino Working Group, FNAL 24 Oct 2011

Neutrino Working Group, FNAL 24 Oct 2011

In the last 10 years there has been a transition

1) From a few kg detectors to 100s or 1000s kg detectors → Think big: qualitative transition from cottage industry to large experiments

2) From "random shooting" to the knowledge that at least the inverted hierarchy will be tested

Discovering Ovßß decay:

- Discovery of the neutrino mass scale
- → Discovery of Majorana particles
- \rightarrow Discovery of lepton number violation

The ultimate frontier in Neutrino Physics

Neutrino Working Group, FNAL 24 Oct 2011

If $0v\beta\beta$ is due to light v Majorana masses

$$\left\langle m_{\nu}\right\rangle^{2} = \left(T_{1/2}^{0\nu\beta\beta} G^{0\nu\beta\beta}(E_{0},Z) \left|M_{GT}^{0\nu\beta\beta} - \frac{g_{V}^{2}}{g_{A}^{2}}M_{F}^{0\nu\beta\beta}\right|^{2}\right)^{-1}$$

$$M_F^{0\nu\beta\beta}$$
 and $M_{GT}^{0\nu\beta\beta}$ can be calculated within
particular nuclear models
 $G^{0\nu\beta\beta}$ a known phasespace factor
 $T_{1/2}^{0\nu\beta\beta}$ is the quantity to
be measured
 $\langle m_v \rangle = \sum_{i=1}^3 |U_{e,i}|^2 m_i \varepsilon_i$ effective Majorana v ($\varepsilon_i = \pm 1$ if CP is conserved)

Majorana v mass CP is conserved)

Lots of activity in the field of nuclear theory spurred by the experimental work

But note that the knowledge of the nuclear matrix elements

is not required

to discover

- Majorana particles and
- lepton number violation!

Simplified List of Limits for BBOv decay

Candidate	Detector		Present	<m> (eV)</m>
nucleus	type	(kg yr)	Τ_{1/2}^{0νββ} (yr)	
⁴⁸ Ca			>1.4*10 ²² (90%CL)	
⁷⁶ Ge	Ge diode	~47.7	>1.9*10 ²⁵ (90%CL)	<0.35
⁸² Se			>2.1*10 ²³ (90%CL)	
¹⁰⁰ Mo			>5.8*10 ²³ (90%CL)	
¹¹⁶ Cd			>1.7*10 ²³ (90%CL)	
¹²⁸ Te	TeO2 cryo		>1.1*10 ²³ (90%CL)	
¹³⁰ Te	TeO ₂ cryo	~12	>3*10 ²⁴ (90%CL)	<0.19 - 0.68
¹³⁶ Xe	Xe scint	~4.5	>1.2*10 ²⁴ (90%CL)	<1.1 - 2.9
¹⁵⁰ Nd			>1.2*10 ²¹ (90%CL)	
¹⁶⁰ Gd			>1.3*10 ²¹ (90%CL)	

ββ0v discovery claim

Is there an ideal source?

- High Q value reduces backgrounds and increases the phase space & decay rate,
- Large abundance makes the experiment cheaper
- A number of isotopes have similar matrix element performance

It is very important to understand that a healthy neutrinoless double-beta decay program requires more than one isotope. This is because:

- There could be unknown gamma transitions and a line observed at the "end point" in one isotope does not necessarily imply that Ovßß decay was discovered (this issue may disappear for EXO with Ba tagging)
- Nuclear matrix elements are not very well known and any given isotope could come with unknown liabilities
- <u>Different isotopes correspond to vastly different</u> <u>experimental techniques</u>
- · 2 neutrino background is different for various isotopes
- The elucidation of the mechanism producing the decay <u>requires</u> the analysis of more than one isotope

Neutrino Working Group, FNAL 24 Oct 2011

Different techniques

- Final state ID: 1) "Geochemical": search for an abnormal abundance
 - of (A,Z+2) in a material containing (A,Z)
 - 2) "Radiochemical": store in a mine some material (A,Z)
 - and after some time try to find (A,Z+2) in it
 - + Very specific signature
 - + Large live times (particularly for 1)
 - + Large masses
 - Possible only for a few isotopes (in the case of 1)
 - No distinction between Ov, 2v or other modes
- "Real time": ionization or scintillation is detected in the decay
 - a) "Homogeneous": source=detector
 - b) "Heterogeneous": source # detector
 - + Energy/some tracking available (can distinguish modes)
 - + In principle universal (b)
 - Many γ backgrounds can fake signature
 - Exposure is limited by human patience

Ov and 2v decays can be separated in a detector with sufficiently good energy resolution

 \rightarrow Good energy resolution is key!

Shielding a detector from gammas is difficult because the absorption cross section is small.

Example:

y interaction length in Ge is 4.6 cm, comparable to the size of a germanium detector.

Shielding double-beta decay detectors is much harder than shielding Dark Matter ones

Neutrino Working Group, FNAL 24 Oct 2011

Topology and particle ID very important to identify and reject backgrounds:

Two examples from the first EXO-200 physics run

Discovery of the 2v mode in ¹³⁶Xe

Neutrino Working Group, FNAL 24 Oct 2011

Neutrino Working Group, FNAL 24 Oct 2011

Gratta -- Double Beta Decay

18

Rn Content in the Xenon

Some experiments running or in preparation (<u>not a complete list</u>)

Isotope	Experiment	Main principle	Fid mass	Lab
⁷⁶ Ge	Majorana [†]	Eres,2site tag, Cu shield	30-60 kg	SUSEL
	Gerda [†]	Eres,2site tag, LAr shield	15-35 kg	G Sasso
	MaGe/GeMa	See above	~1ton	DUSEL? GS?
¹⁵⁰ Nd	SNO+	Size/shielding	44 kg	SNOlab
⁸² Se	SuperNEMO [‡]	Tracking	~100 kg	Modane
¹³⁰ Te*	CUORE	E Res.	204 kg	G Sasso
¹³⁶ Xe	KamLAND-Zen	Size/shielding	400 kg	Kamioka
¹³⁶ Xe	EXO	Tracking/Eres	150 kg	WIPP
		Ba tag, Track/Eres	1-10ton	DUSEL?

* No isotopic enrichment in baseline design

⁺ Plan to merge efforts for ton-scale experiment

Neutrino Working Group, FI * Non-homogeneous detector

What to expect in the next 10-15 yrs

What to expect in the next ~decade

What to expect in the next ~decade

ω

Gratta -- Double Beta Decay

Conclusions

Over its glorious history neutrino physics has provided plenty of surprises and has required forays in many different areas of science and technology

The search for neutrinoless double beta decay really belongs to this tradition!

- Several 100kg class experiments are coming online
- Many different/clever experimental ideas
- Many new theoretical ideas
- Ton-class experiments are being planned for the near future

The US has played/is playing a leading role and we want to keep it this way!

Neutrino Working Group, FNAL 24 Oct 2011