Large Detectors: Challenges

ROBERT J. WILSON

COLORADO STATE UNIVERSITY 24 October 2011, Fermilab (Video) High Intensity Frontier Neutrino Workshop

- Why Very Large Detectors
- Large Detector Technologies
- Global Status
- Summary

Physics Motivation

v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v

Solar Neutrinos

Why Large Detectors?

Large Detector Technology

Water Cherenkov Liquid Argon TPC Liquid Scintillator

Water Cherenkov Detectors

- Mature technology
 - ~30 years experience
 - IMB, Kamioka, Super-K
- Modest extrapolation from current experiments
 - No critical path R&D for essential components
- Challenges
 - Very large mass
 - Cavity excavation
 - Tank/liner construction
 - Photosensor implosion
 - "Old technology"
- Need depth, fine granularity, Gd doping for lower energy physics
 - In tension with larger mass for fixed budget

Water Cherenkov Detectors

- LBNE (US) WCD
 - 81.3 m x **\$\oplus\$ 65.0** m cylinder
 - Total/fiducial mass 260/200 kt
- Super-Kamiokande
 - 41.4 m x ϕ 39.3 m cylinder
 - Total/fiducial mass 50/22.5 kt
- LBNE WCD/Super-K Scale-Up
 - Linear dimensions: 2.0 x ϕ 1.65
 - Mass: 5.2/8.9
- Hyper-K (Japan)
 - <u>Two</u> x 250 m x ϕ ~48 m cylindrical egg
 - Total/fiducial mass: 990/560 kt
- MEMPHYS (Europe)
 - <u>N</u> x 65 m x ϕ 65.0 m cylinder
 - Total/fiducial mass <u>N</u> x ~200/147 kt

Water Cherenkov Detectors

- LBNE (US) WCD
 - 81.3 m x **\$\oplus\$ 65.0** m cylinder
 - Total/fiducial mass 260/200 kt
- Super-Kamiokande
 - 41.4 m x ϕ 39.3 m cylinder
 - Total/fiducial mass 50/22.5 kt
- LBNE WCD/Super-K Scale-Up
 - Linear dimensions: 2.0 x ϕ 1.65
 - Mass: 5.2/8.9
- Hyper-K (Japan)
 - <u>Two</u> x 250 m x ϕ ~48 m cylindrical egg
 - Total/fiducial mass: Two x 500/280 kt
- MEMPHYS (Europe)
 - <u>N</u> x 65 m x ϕ 65.0 m cylinder
 - Total/fiducial mass <u>N</u> x ~200/147 kt

Liquid Argon TPCs

- "Electronic Bubble Chamber"
 - Millimeter resolution over very large volume
 - ~x6 signal efficiency for v_e appearance compared to water
- Modest operating experience
 - ~25 years R&D and prototypes
 - ICARUS T600 beam 2010
 - LAr calorimeters mature technology
- Challenges
 - Large size extrapolation from current experiments
 - Large intermediate-scale (1 kt) prototype
 - Target (LAr) cost
 - Purity, underground cryogenics
 - Backgrounds for low energy physics

Liquid Argon TPCs

- LBNE (US) LAD
 - Two x 24m x 16m x 49m cryostats
 - Total/fiducial mass: 50/32.6 kt
- ICARUS
 - Two x 3.6m x 3.9m x 19.6m cryostats
 - Total/fiducial mass: 0.6/0.48 kt
- LBNE LAD/ICARUS Scale-Up
 - Linear dimensions: 6.7 x 4.1 x 2.5
 - Mass: 42/34
- GLACIER (Europe)
 - 20 m x ϕ 70 m cylinder
 - Total mass: 100 kt
- LANNDD (US/Italy)
 - N x 5 m x 5 m x 5m
 - Maximum total active mass 122 kt

Liquid Scintillator Detectors

- Mature technology
 - KamLAND, BOREXINO
 - No critical path R&D for essential components
- Monolithic detectors optimized for low energy physics
 - Very good energy resolution and v. low threshold
 - Need depth, high granularity of photosensors
- Large size extrapolation from current experiments
- Challenges
 - Cavity excavation
 - Tank construction
 - Photosensor cost
 - Photosensor implosion
 - Performance for long-baseline neutrinos

Liquid Scintillator Detectors

• LENA

- 100 m x φ 30 m cylinder
- Total/fiducial mass 50/?? kt
- KamLAND
 - ϕ 13 m sphere LS
 - Total/fiducial mass 1.0/0.5 kt
- LENA/KamLAND Scale-Up
 - Height/width: 7.7 x 2.3
 - Mass: 50/?100
- NoVA
 - 15.6 m x 15.6 m x 67 m
 - Total/fiducial mass: 15/9.8 kt

Global Status

US

- Long-Baseline Neutrino Experiment (LBNE) Science Collaboration
 - 320 collaborators, 60 institutions, 5 countries
- Site selected : Homestake, SD (1300 km from Fermilab)
 - Cost-effectiveness of Homestake for LBNE and other underground projects (Dark Matter, $0\nu\beta\beta$) under review by DOE
- Two far detector technologies: WCD + LAr TPC \rightarrow selection by end of this year
- LBNE Project approval status: CD-0 "Project Definition" \rightarrow CD-1 spring 2012

Europe

- EU-funded LAGUNA* evolved to LAGUNA-LBNO: 13 countries 2011-14
- Far detector technologies: MEMPHYS 500-kt WC, GLACIER 100-kt LAr TPC, LENA 50kt liquid scintillator
- LAGUNA seven sites \rightarrow focus on two sites (130 km and 2300 km from CERN)
 - Frejus, France : 500-kt WCD
 - Pyhasalmi, Finland : 100-kt LAr TPC + (?)magnetized muon ranger; 50-kt LS
- Critical decision : 2014?

R.J.Wilson/Colorado State University

*Large Apparatus for Grand Unification and Neutrino Astrophysics

Global Status

Asia

- Three sites (295 km, 295+1050km, 658 km from JPARC)
 - Hyper-Kamiokande 2 x 500-kt WCD
 - Kamioka and Korea 2 x 500-kt WCD (not clear if this option still being pursued)
 - JPARC-to-Okinoshima (Japanese island) 100-kt LAr (GLACIER)
- Site studies primarily for Hyper-K
- Status : Hyper-K Letter of Intent September 2011
- LAr R&D
- International Workshop on Next generation Nucleon decay and Neutrino detectors : NNNxx series
 - First in 1999 at Stony Brook University
 - Rotates US-Europe-Japan
 - 12th workshop : NNN11 next month in Zurich

Conclusion

- 10 years of studies and reviews conclude that a very large detector and very long baseline are needed to answer fundamental questions
- Higher power neutrino beams will significantly accelerate the rate of discovery and the total science output
- Understanding supernovae is central to our understanding of many aspects of the universe
- Proton decay and other new physics can only be probed with very large detectors
- Complementary detector technologies would optimize the global science program