

Impact of Project X on LBNE

Mary Bishai (LBNE collaboration) Brookhaven National Laboratory

Intro

LBNE Beams

LBNE Detectors

Beam Physics with Project X

Summary

Impact of Project X on LBNE Neutrino Working Group Mtg, Oct 14 2011, FNAL

Mary Bishai (LBNE collaboration) Brookhaven National Laboratory

October 24, 2011

KHAVEN The Long Baseline Neutrino Experiment

Impact of Project X on LBNE

Mary Bishai (LBNE collaboration) Brookhaven National Laboratory

Intro

LBNE Beam LBNE Detectors

Beam Physics with Project X

Summary

A Long Baseline Neutrino Experiment (LBNE) from Fermilab to large scale neutrino detectors at Homestake is now being designed. CDR late 2011.

The LBNE Beamline at Fermilab

Impact of Project X on LBNE

Mary Bishai (LBNE collaboration) Brookhaven National Laboratory

Intro

LBNE Beams

LBNE Detectors

Beam Physics with Project X

Summary

The LBNE project will start with a 700kW beam with 80-120 GeV p

In the future will profit from the 2.3 MW Project X beam

Main Injector Primary Proton Beam Power

(R. Zwaska)

BROOKHAVEN NATIONAL LABORATORY

Mary Bishai (LBNE collaboration) Brookhaven National Laboratory

Intro

LBNE Beams

LBNE Detectors

Beam Physics with Project X

Summary

🐘 Main Injector Primary Proton Beam Power 🛛 🕞

(R. Zwaska)

BRO

Mary Bishai (LBNE collaboration) Brookhaven National Laboratory

Intro

LBNE Beams

LBNE Detectors

Beam Physics with Project X

Summary

BROOKHAVEN

LBNE Neutrino Beam

(LBNE collaboration Brookhaven National Laboratory

Intro

LBNE Beams

LBNE Detectors

Beam Physics with Project X

Summary

Wide-band beam to cover BOTH oscillation maxima for best CP Violation/Mass Hierarchy sensitivity

(R. Wilsons talk)

Impact of Project X on LBNE

Mary Bishai (LBNE collaboration) Brookhaven National Laboratory

Intro

LBNE Beams

LBNE Detectors

Beam Physics with Project X

Summary

SuperKamiokande : 50kt

200kt (fiducial), \approx 55m diameter, \approx 60m height, 30K 10-12" HQE PMTs (15% coverage)

Known technology \sim 4imes SuperK

Large NC π^0 backgrounds, low eff.

BROOKHAVEN LBNE Detectors: Liquid Argon TPC

ICARUS: 0.6kt

(R. Wilsons talk)

Impact of Project X on LBNE

Mary Bishai (LBNE collaboration) Brookhaven National Laboratory

Intro

LBNE Beams

LBNE Detectors

Beam Physics with Project X

Summary

LBNE LAr : 17kt module X 2

ArgoNeuT (175 litre) prototype in the NuMI beam \rightarrow

High efficiency and purity

Requires 30× scale-up - challenging.

DOKHAVEN LBNE spectra and event rates

Impact of Project X on LBNE

Mary Bishai (LBNE collaboration) Brookhaven National Laboratory

Intro

LBNE Beams

LBNE Detectors

Beam Physics with Project X

Summary

On-axis wide-band beam (NuMI focusing). Water Cerenkov response is based on the SuperK MC. LAr is modeled as a near-perfect detector. Exposure is 3.5 MW. yr ν with sin² $2\theta_{13} = 0.04$:

Latest Global fit to $\sin^2 \theta_{13}$

Our global results for $sin^2\theta_{13}$

G. Fogli et. al.

Impact of Project X on LBNE

Beam Physics with Project X

 $sin^2\theta_{13} = 0.021 \pm 0.007$ (old reactor fluxes) $sin^2\theta_{13} = 0.025 \pm 0.007$ (new reactor fluxes)

PRD 84, 053007 [arXiv:1106.6028]

ATM+LBL+CHOOZ

Solar+KamLAND

of data

In conclusion, evidence for $sin^2\theta_{13} > 0$ at $> 3\sigma$ (with small changes for new/old reactor fluxes assumed in the fit).

BROOKHAVEN Measurements of CPV and MH in LBNE

BROOKHAVEN Measurements of CPV and MH in LBNE

BROOKHAVEN Fraction of $\delta_{ m cp}$ values with Project X (120 GeV)

Ultimate u Oscillation Sensitivities

Summary and Conclusions

Impact of Project X on LBNE

Mary Bishai (LBNE collaboration) Brookhaven National Laboratory

Intro

LBNE Beams

LBNE Detectors

Beam Physics with Project X

Summary

- With Project X, LBNE can reach 3σ sensitivity to MH and CP Violation for values of $\sin^2 2\theta_{13} \sim 0.01$ in less than 10 yrs.
- For 95% of the global fit range of $\sin^2 2\theta_{13} = 0.097 \pm 0.027$: 5 σ sensitivity for ν CP Violation with ProjectX.
- Sensitivity increases with Project X beyond beam power can be achieved using lower primary beam energies at \sim 2MW.