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Heat sink 
(8-10 mK)

Cu holder

Thermometer

Incident
radiation (E)

 TeO2 

crystal

PTFE 
supports (G)

NTD Ge
sensor

Absorber
Crystal (C)

ΔT = E
C

τ = C
G

Weak 
Thermal 
coupling 

Working principle: the CUORE TeO2 bolometers

Absorber crystal: TeO2
• M = 750 g
• C = 2x10-9 J/K 
• ΔT = 0.1 mK/MeV
• τ ~1 sec

Sensor: NTD Ge thermistor
• R = R0exp(T0/T)1/2

• R0 = 1 Ω, T0 = 3-4 K
• R = 100 MΩ
• ΔR = 3 MΩ/MeV,  ΔV = 0.3 mV/MeV
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Goal: direct detection of  WIMPs via scattering on a nucleus
	

 → signature: nuclear recoil

• Coherent scattering

• σ ∝ A2: scattering in CaWO4 dominated by 

W

• light WIMPs (mχ< 20 GeV): W becomes 
negligible

Dark Matter

• Challenges:

• Very low energies: <O(10 keV)

• Low rates: < O(1 kg-1 y-1)

C
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Threshold

• Ideal experiment

• Low bkg

• Low threshold

• Possibility of choosing target nucleus 
(multiple target nuclei)

DM sensitivity
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2ν-DBD (M.Goeppert-Mayer, 1935) is an extremely rare second order process allowed 
by SM. It take place when both the parent and the daughter nuclei are more bound than 
the intermediate one (or the transition on the intermediate one is strongly suppressed). 
Because of the pairing term, such a condition is fulfilled in nature for a number of even-
even nuclei.

Double Beta Decay (I)
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• Extremely rare second order process allowed by SM

• Observed for several nuclei
• Process: τ0ν ~ 1019-1021 y
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the intermediate one (or the transition on the intermediate one is strongly suppressed). 
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Double Beta Decay (II)
0ν-DBD (W.H.Furry, 1939) is a lepton number violating (ΔL=2), not 
allowed by the Standard Model. The 0νDBD can occur only if two 
requirements are satisfied: i) the neutrino has to be a Majorana particle, 
and ii) the neutrino has to have a non-vanishing mass.  

This is the crucial process for neutrino physics since can 
solve the puzzle of the Majorana nature of the neutrino
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• 0ν-DBD is an extremely rare
• process: τ0ν > 1024-1025 y

• β radiation

Double Beta Decay (II)

implies physics beyond SM0ν-DBD:   (A,Z)  → (A,Z+2) + 2e-

If 0ν-DBD is observed: neutrino is a 
Majorana particle and mν is measured

2ν spectrum

0ν peak

0ν-DBD (W.H.Furry, 1939) is a lepton number violating (ΔL=2), not 
allowed by the Standard Model. The 0νDBD can occur only if two 
requirements are satisfied: i) the neutrino has to be a Majorana particle, 
and ii) the neutrino has to have a non-vanishing mass.  

This is the crucial process for neutrino physics since can 
solve the puzzle of the Majorana nature of the neutrino

For 2e- sum energy, expected 
signature is a peak with E ≡ Qββ

Schetcher,  Valle  Phys. Rev. D25 2951 1982   
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|<mν>| = |  m1 |Ue1 |2 + m2 |Ue2 |2 eiα + m3 |Ue3 |2 eiβ  |

Parameterizing

)m(f|m| ν 1=><

Majorana phases

Double Beta Decay (III)

(T 0ν
1/2)

−1 = G(z,Q)|M |2�mν�2

Atomic physic:
phase space term
O(Q5)

Nuclear physic:
nuclear matrix elements
(big uncertainties!)

Particle physics:
neutrino mass 
(neutrino propagator)
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|<mν>| = |  m1 |Ue1 |2 + m2 |Ue2 |2 eiα + m3 |Ue3 |2 eiβ  |

Parameterizing

)m(f|m| ν 1=><

Majorana phases

Double Beta Decay (III)

(T 0ν
1/2)

−1 = G(z,Q)|M |2�mν�2

Atomic physic:
phase space term
O(Q5)

Nuclear physic:
nuclear matrix elements
(big uncertainties!)

Particle physics:
neutrino mass 
(neutrino propagator)

Measuring 0ν-DBD it is a unique tool to 
measure mν and the ν mass the hierarchy
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Sensitivity (I)

Half-life corresponding to the maximum signal nB that could be hidden by the 
background fluctuations at a given statistical C.L.

S0ν ∝ i.a. ·
�

M · T

Γ · b
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Sensitivity (I)

Half-life corresponding to the maximum signal nB that could be hidden by the 
background fluctuations at a given statistical C.L.

S0ν ∝ i.a. ·
�

M · T

Γ · b

Live t ime: 5-10 y. 
Limited by scientists 
live time 

Mass: actually in the 10-40 
kg range; next generation in 
1-ton scale

Background: currently 
this is the ONLY tunable 
parameter to push 
sensitivities of order of 
magnitudes.

Resolut ion: detector 
dependent.   Not big 
improvements expected 

Isotopic abundance: for most 
candidates enrichment is needed
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Sensitivity (II): discovery potential

Yu.G. Zdesenko, F.A. Danevich and V.I. Tretyak 
J.Phys. G: Nucl. Part. Phys. 30 (2004) 971

2νDBD is an unavoidable background for any 
0νDBD (neutrino tagging?). 

Energy resolution is a crucial parameter for any 
experiment aiming to measure 0νDBD and not 
just increasing the sensitivity on the not 
observed process.

11



P. Gorla ANT’11 - October 10-12 2011

Heat sink (~10mK)

Conductance

Thermometer 

Absorber crystal

C ÷T 3

ΔT

ΔR

E

!T = E
C

Thermal detectors: summary (I)
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• Wide choice of materials: TeO2, CaWO4, Ge, 
Si, Al2O3, CaMoO4, BGO,  etc. (low C at 
working T)
• Excellent energy resolution (∼ 1 ‰ FWHM) 
and low threshold (∼ 1 keV), due to high 
number of carriers
• Detector response independent from the 
radiation (calorimeters)

Heat sink (~10mK)

Conductance

Thermometer 

Absorber crystal

C ÷T 3

ΔT

ΔR

E

!T = E
C
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Thermal detectors: summary (II)
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• Difficult to operate (dilution refrigerators)

• Very slow response: thermal detectors with mass greater than 

~1 g can operate only underground

• Operated in vacuum and with no dead layers: exposed to bkg 
from surface contaminations

Thermal detectors: summary (II)

13

Disadvantages:
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• Cosmic rays:
• Underground labs
• Vetos

• Radioactivity 
• Material selection

• HPGe
• NAA
• ICPMS

• Clean Room
• Controlled atmosphere
• Shielding
• Active discrimination?

NE

A24

Background reduction

14
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Secular equilibrium 
is broken

Surface background from 210Pb
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• 210Pb beta decays with Q=63.5 keV (t=22y)
• 210Bi beta decays with Q=1.162 MeV (t=5 days)
• 210Po alpha decays with Q=5.405 MeV (this is 

where the continuum bkg come from)
• How do we measure 210Pb?

• less than 100 atoms of 210Pb for cm2 can 
generate present bkg level.

• ICPMS sensitivity better than a ppt but not 
sensitive enough on short lived isotopes

• HPGe can measure the 46 keV from 210Pb 
(but low branching and penetration)

• Barrier Si detectors: small area and/or high 
bkg: not sensitive enough!

• No technique is sensitive enough!!
• This makes very hard to validate and compare passive 

shielding techniques

Surface background from 210Pb
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ABSURD: A Background SUrface 
Rejection Detector

arxiv:1103.5296

weak thermal coupling

heat bath

NTD thermistor

light detector

TeO crystal2

NTD thermistor

alpha decay

reflective foil

scintillator foil

non scintillating
absorber crystal 

Pure bolometric detectors, measuring 
o n l y t h e h e a t s i g n a l , c a n n o t 
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The balance between light collection/energy threshold of the light detector and the light emission 
of the s.f. must be such that a 1.5 MeV alpha can be detected lowest alpha sources ~ 4 MeV.
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(140 g) crystal

Sensors: NTD 
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Thermal light detector:
• Standard bolometric light detector have typical 

threshold ~  300-500 eV (e.g Lucifer,)
• It is possible (using TES e SQUID) reach thresholds 

below 100 eV (e.g. CRESST)
• A “standard” light detector is just an undoped wafer 

(Ge, Si o SOS) with a suitable thermistor on it
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• It is possible (using TES e SQUID) reach thresholds 

below 100 eV (e.g. CRESST)
• A “standard” light detector is just an undoped wafer 

(Ge, Si o SOS) with a suitable thermistor on it

Goal: a scintillating foil that produce enough light so 
that the collected light is > 300-500 eV 
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Collaboration with BNL (M.Yeh group): test of different polymers (3M THV), different 
scintillators (LAB, PPO,...), and different deposition techniques (spin coating...)
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Any suggestion is welcome!


