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The DUNE experiment
Measure CP violating phase and neutrino Mass Hierarchy by searching 

for differences in the   and  oscillation probabilitiesνμ → νe ν̄μ → ν̄e

Annu. Rev. Nucl. Part. 
Sci. 2016. 66:47–71

Far Detector is  
“On the Neutrino Axis” 
 neutrino oscillations are 
measured by precisely 

reconstruct the spectrum 
normalization and shape

→

Fiducial mass ~ 40 kton

On-axis
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• Any distortion of the spectrum is a source of 
systematic uncertainty

• DUNE needs a Near Detector (ND) that can:
✦ Measure the event rate in argon  

(flux + cross section)
✦ Independent measurement of  flux
✦ Monitor the beam and spectrum stability
✦ Provide robustness to “unknown of unknown”

ν/ν̄



The DUNE Near Detector
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• Three main near detector complexes:
✦ System for on-Axis Neutrino Detection (SAND)
✦ HpTPC+ECAL (ND-GAR)
✦ Liquid Argon (ND-LAr)

• Complementarity necessary to achieve:
✦ Detection of  interactions in argon nucleus, Low-momentum threshold for protons, 

Neutron detection, Beam monitor,  flux estimation
ν

ν

LArMPDSAND

arXiv:2103.13910



The PRISM technique at the DUNE ND
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Details about the PRISM will 
be given later by L.Pickering

• The ND-LAr and ND-GAr detector complexes will move to different off-axis 
angles to study Ar-detector response as a function of the neutrino energy

• Thus, for a non-negligible time both detectors will not detect the  
“same neutrino beam” that goes to the Far Detector (FD)

• However, it’s important to make sure the beam rate, profile and the event 
spectrum are stable over the time, i.e. no issues occurred in the  beam line ν
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• MINOS ND (on-axis) found issues when looking at the time-dependent 
variation of the neutrino reconstructed energy spectrum
• NOvA (off-axis) didn’t observe significative changes

• Critical if we measure the CP phase by observing a spectrum distortion 

Importance of beam monitoring with DUNE-PRISM
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The DUNE Near Detector

ν On-Axis
While ND-GAr and ND-LAr  

move to different off-axis angles 
SAND is always on-axis 

• We need a detector system always on the neutrino axis: SAND


• Precise beam monitoring in a few-days basis of event rate, beam width 
and spectrum

✦ It must be massive (many tonnes) to be able to detect possible  

issues in the shortest time possible to minimise “data loss”


• Other important functions of SAND:


✦ Complementary measurement of  flux using  
different but complementary methods


✦ Robustness against “unknown of unknown”  
by measuring neutrino interactions  
in targets other then argon  
and neutron detection

ν/ν̄



System for on-Axis Neutrino Detection (SAND)

88

ν

Non-Ar Target 
+ Tracker

LAr Target

ECAL

Magnet

• SAND is a complex of several sub-detectors:
- 1t thin LAr module (design in progress) 
- Tracker: non-argon massive target that also  

provides particle tracking and calorimetry 
- Everything surrounded by an 

Electromagnetic CALorimeter (ECAL)  
in a superconducting magnet Reference 

The Tracker design still 
to be finalised (various 

options proposed)

BXO



NIM A 419 (1998) 320–325
NIM A482 (2002),364
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The superconducting magnet 
• Both the superconducting magnet and ECAL 

are inherited from the KLOE detector operated 
at DA𝛷NE (LNF) 



NIM A 419 (1998) 320–325
NIM A482 (2002),364
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The superconducting magnet 
• Both the superconducting magnet and ECAL 

are inherited from the KLOE detector operated 
at DA𝛷NE (LNF) 


• Superconducting coil produces the magnetic 
field while the iron return yoke suppresses the 
fringe field outside the detector

KLOE 
magnet



The superconducting magnet 
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• B-field ~0.6 T (2.9 kA) in the center and quite stable 
for most of the inner volume (requisite for precise  
momentum reconstruction)


• Magnets have very large mass (~0.5 kt): potential 
large source of background  neutral particles  
(n, ) produced by  interactions in magnet can give 
a vertex in the detector fiducial volume)

→
γ νμ

Longitudinal field 
component in the 

KLOE detector

G
au

ss

NIM A 419 (1998) 320–325
NIM A482 (2002),364



The Electromagnetic 
CALorimeter
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Old KLOE 
tracker (not 
used)

NIM A 419 (1998) 320–325
NIM A482 (2002),364

The ECAL contains all the energy of 
particles escaping the tracker, e.g. 
photons from EM shower or  π0 → γγ



The Electromagnetic 
CALorimeter
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NIM A 419 (1998) 320–325
NIM A482 (2002),364

σt = 54 ps / Edep(GeV ) + 50 ps

σE /E = 5.7 % / Edep(GeV )

Very good energy and time resolution

• KLOE electromagnetic calorimeter ~15 X0 ECAL

• Module made of 5 bars 4.4cm granularity, 4880 

channels

• 1 mm diameter scintillating fibers 

• Lead:Fiber:Glue volume ratio = 42:48:10

• PMTs to read out the scintillation light 
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Liquid-Argon target
• A “meniscus” volume filled with liquid argon will be upstream the Tracker


• Provide ~1t LAr-volume in a magnetised volume


• Optical readout instead of charge readout


• Also possibility to measure in the Tracker the neutron multiplicity and 
energy from -Argon interactionsν

15• Detector design and R&D is in progress



The Inner Tracker
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• Provide a massive non-argon target and particle tracking


1. Mass for beam monitoring (in addition to ECAL)


2. Measure neutrino interaction with event-by-event neutron 
detection with time of flight (ToF)


3. Characterize nuclear effects in nuclei other than argon


4. Isolate neutrino interaction in hydrogen to infer the neutrino flux


• Two main proposals:


✦ The 3D-Projection Scintillator Tracker (3DST)  
+ Time Projection Chambers (TPC)


✦ Straw Tubes with graphite / polypropylene target


• Process to finalise the design is ongoing
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3DST+TPC inside SAND

ν 3DSTTPC

μ

Event rate per year
• 10.5t plastic scintillator as neutrino target 


✦ Fully-active, excellent energy resolution  

✦ Good tracking with momentum 

reconstruction by range

✦ TPCs to precisely reconstruct the 

kinematics of particles exiting 3DST

• Event-by-event neutron detection and 

kinetic energy measurement with ToF

BXO
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The 3D-Projection Scintillator Tracker (3DST)

• Polystyrene doped with 1.5% pTP and 
0.01% POPOP  cubes of 1.5 cm edge

• Wavelength shifting fibers ( 1mm) 
capture the scintillation light and guide  
it to Silicon PhotoMultiplier

• Optically isolated cubes plus 
three orthogonal WLS provides  
isotropic detection

• High light yield, thus very good  
time resolution (~0.5 ns / cube)

→
ϕ =

2018 JINST 
13 P02006

Hamamatsu  
MultiPixel PhotoCounter

Same detector but x5 smaller is 
being built for T2K experiment
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The Time Projection Chambers

275 V/cm

Resistive layer improves  the 
spatial resolution by ~3, while 

keeping dE/dx resolution <10% 

Edrift
Charged Particle

e−

Ar(95%) - CF4(3%) - iC4H10(2%)
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Low-density tracker option: Straw Tubes

• Filled with gas ionised by particles

• Ionized electrons drift to straw wire 
and create signal (several 100 eV)

• Radiator foils are place between 
layers of tubes  Transition 
Radiation generate signal ~10 keV

• Space-point resolution  

• Good e/𝝅 separation with transition 
radiation on radiator foils

→

< 200 μm

Charged  
Particle
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HiResMν:

Costs and Detector Design

R. Petti

University of South Carolina

LBNE Near Detector Workshop

Columbia SC, December 12, 2009

HiResMν:

Costs and Detector Design

R. Petti

University of South Carolina

LBNE Near Detector Workshop

Columbia SC, December 12, 2009

44.0900

5.3000 20.1300
5.0000

18.6600

Radiator:
150 foils

Tunable
target
slab

XX straws YY straws

Roberto Petti USC

Roberto Petti USC

CH2
<latexit sha1_base64="mUm2Hg5Se2GYpLxpt/u/19zZfQc=">AAAB/HicbVC7TsMwFL0pr1JegY4sFi0SU5WUAcaKLh2LRB9SG0WO67RWnYdsBymKyq+wMIAQKx/Cxt/gphmg5UhXOjrnXl/f48WcSWVZ30Zpa3tnd6+8Xzk4PDo+MU/P+jJKBKE9EvFIDD0sKWch7SmmOB3GguLA43TgzdtLf/BIhWRR+KDSmDoBnobMZwQrLblmdZy/kXk8oQvU7tTdZt01a1bDyoE2iV2QGhTouubXeBKRJKChIhxLObKtWDkZFooRTheVcSJpjMkcT+lI0xAHVDpZvniBLrUyQX4kdIUK5erviQwHUqaBpzsDrGZy3VuK/3mjRPm3TsbCOFE0JKtFfsKRitAyCTRhghLFU00wEUz/FZEZFpgonVdFh2Cvn7xJ+s2Gfd1o3jdrrbsijjKcwwVcgQ030IIOdKEHBFJ4hld4M56MF+Pd+Fi1loxipgp/YHz+AI/JlAo=</latexit>

Replaceable by nuclear target:
C, Ca, Fe, Pb, Ar, etc.

Total thickness ⇠ 0.015X0
<latexit sha1_base64="JD0WSmbcTcwS7ru/ATth71TR79g=">AAACCXicbVBLSwMxGMzWV62vVY9egq3gqexWRI9FLx4r9AXtsmTTbBuax5JkhbL06sW/4sWDIl79B978N6btHrR1IDCZ+T6SmShhVBvP+3YKa+sbm1vF7dLO7t7+gXt41NYyVZi0sGRSdSOkCaOCtAw1jHQTRRCPGOlE49uZ33kgSlMpmmaSkICjoaAxxchYKXRhUxrEoBlRPBZEa1jpa8qhV/X8S9gNvUrolu1lDrhK/JyUQY5G6H71BxKnnAiDGdK653uJCTKkDMWMTEv9VJME4TEakp6lAnGig2yeZArPrDKAsVT2CAPn6u+NDHGtJzyykxyZkV72ZuJ/Xi818XWQUZGkhgi8eChObXAJZ7XAAVUEGzaxBGFF7V8hHiGFsLHllWwJ/nLkVdKuVf2Lau2+Vq7f5HUUwQk4BefAB1egDu5AA7QABo/gGbyCN+fJeXHenY/FaMHJd47BHzifPyO9mAU=</latexit>

3% of mass

~97% of mass

• 78 modules with CH2 target and radiator (polypropylene) with Xe/CO2 gas

• 7 modules with Graphite (C) target with Ar/CO2 gas

• 5 modules w/o target w/o radiator with Ar/CO2 gas

• ST full configuration: 0.018 g/cm3, ~5.2t mass 
✦ physics measurements with both CH2 and Graphite targets
✦ Aim at subtracting the Carbon contribution to obtain interactions in H

Low-density tracker option: Straw Tubes

BXO
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An example of beam monitoring

sin2𝞱23 = 0.5
∆m232 = 0.00252 eV2

Neutrino flux at the 

Nominal FD flux (observed beam changed)
ND-to-FD extrapolated flux (observed beam change)
ND-to-FD extrapolated flux (beam change not observed)

 Example of a situation where ND-LAr and ND-GAr don’t observe any 
change in the beam parameters when they move off-axis 

A systematic distortion in the  energy spectrum 
extrapolated to the far detector can’t be observed 

ν

Sudden change in 
beam condition when 

NDGar+NDLar has 
moved to 5m off-axis
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The measurement of the oscillation parameters will be affected by large biases

An example of beam monitoring
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Beam monitoring performances

ECAL sample

Tracker sample

• An efficient beam and spectrum monitoring  
requires a large target mass

✦ ECAL can provide ~14t target
✦ The Tracker can provide an addition ~10t 

(5t), depending on the configuration

• Also measure the beam profile and position

• Identify unexpected spectrum distortions 
within a few days
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Why detecting neutrons is important
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• Important to validate that the inferences 
one makes from studies of proton 
distributions can be successfully applied 
to predict neutrons (i.e.  vs , which  
is the core of CP violation searches)


• Minerva has demonstrated the capability 
of detecting neutrons produced by 
antineutrino interactions (PRD 100, 52002)

ν ν̄

No neutron detection
Resolution on energy transferred to the nucleus (𝜈)

Neutron detection w/ KE measurement



Neutron detection with Time-of-Flight measurement
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• A performant neutron detector requires

✦ Large content of light nuclei (high 

energy transferred)

✦ Excellent time resolution to measure 

its kinetic energy via ToF

• SAND has the unique capability of 

detecting efficiently measuring the 
energy of neutrons produced in both 
argon and other nuclei

Neutron 𝛃 resolution with ECAL

Distance vertex - neutron hit 

Neutron KE resolution via ToF in 3DST

Ti
m

e 

Distance vertex - neutron hit 

Rejection of neutrons from out-FV 
neutrino interactions with 3DST

Ti
m

e 
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Neutrino interactions in hydrogen
Interactions in hydrogen are very useful because not affected by nuclear effects 
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Neutrino interactions in hydrogen
Interactions in hydrogen are very useful because not affected by nuclear effects 
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Neutrino interactions in hydrogen

No detector smearing

Interactions in hydrogen are very useful because not affected by nuclear effects 
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Neutrino interactions in hydrogen
Interactions in hydrogen are very useful because not affected by nuclear effects 

No detector smearing

44.09 mm

∼ 0.015 X0

∼ 0.1 X0

CH2 Target

44.09 mm

44.09 mm

XXYY 
straws

44.09 mm

∼ 0.015 X0

∼ 0.1 X0

CH2 Target

44.09 mm

44.09 mm

XXYY 
straws

C target CH2 target

• Infer both the flux and the 
nucleon form factor


• By comparing C vs CH2 target 
one can obtain the effect of 
neutrino interactions in Hydrogen 
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Neutrino interactions in hydrogen
Interactions in hydrogen are very useful because not affected by nuclear effects 

No detector smearing

• Infer both the flux and the 
nucleon form factor


• By selecting events with low 
transverse momentum we can 
obtain a sample enhanced by 
-Hydrogen interactions

ν̄
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Conclusions

• SAND is the On-Axis ND complex to monitor the neutrino beam and 
energy spectrum


✦ Identify possible issues in the beamline with only a few days data 
taking to avoid biases in the measurement of the oscillation  
parameters or loss of data 


• However, SAND has also other important functions of SAND:


✦ Complementary measurement of  flux using different but 
complementary methods based on interactions in hydrogen


✦ Robustness against “unknown of unknown”, e.g. by measuring 
neutrino interactions in targets other then argon and with neutron 
energy reconstruction

ν/ν̄


