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DUNE Oscillation Goals

e Heard from Cheryl a
What's DUNE looking for? few weeks ago

e ook for signature
oscillation wiggles in
Far detector data

Charge-parity violation

The CP-violating parameter dcr
alters this probability distribution:

e Measure oscillations
precisely enough to
answer pressing

fundamental physics
6 74 2021 Ck | Patrick | Introducti to Neut Int: t m/ ;\“t‘“mm - (\
une hery atricl ntroduction to Neutrino Interactions e {y:mcnon y /5 .
guestions.

as a function of

Neutrino Energy (GeV)
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https://indico.fnal.gov/event/48900/contributions/216753/attachments/144074/182941/IntroToInteractions.pdf

The DUNE Neutrino Flux
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Current generation experiments use narrow-band beams
o Relatively narrow unknown neutrino-by-neutrino energy distribution
o Smaller energy range to constrain interaction physics
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The DUNE Neutrino Flux

Current generation experiments use narrow-band beams

Relatively narrow unknown neutrino-by-neutrino energy distribution
Smaller energy range to constrain interaction physics

DUNE will use an wide band beam:

O7°(E,) (107 /cm? /GeV /POT)
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Oscillations at the Far Detector
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Measuring Neutrino Oscillations

|

Number of near J . Cross N Detector

detector events section effects
Number of far — . Oscillation . Cross . Detector

detector events probability section effects
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Measuring Neutrino Oscillations
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Number of near J . Cross N Detector

detector events section effects
Number of far — . Oscillation . Cross . Detector

detector events probability section effects

Want to know this
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Measuring Neutrino Oscillations

|

e Can we not just look at near/far ratio?

Number of near J . N Detector

detector events effects
Number of far — . Oscillation . . Detector

detector events probability effects

Want to know this
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Measuring Neutrino Oscillations
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e Can we not just look at near/far ratio?
o Itisn't quite that simple...

Nnear (Eobs) — /dEl/ (I)near <E1/) " W <E1/) ) Dnear

(4
=
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S
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Nfar (Eobs) — /dEV (I)far (Ey) : Posc
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Want to know this
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Measuring Neutrino Oscillations

13

e Can we not just look at near/far ratio?

o Itisn't quite that simple...
o Convolution of detector effects with flux - cross section
o Cannot directly compare near and far observables to extract oscillations

Nnear (Eobs) — /dEz/ (I)ncar <E1/) " W (Ez/) ) Dnear

(7
<
Q

(7
S
O
3

Nfar (Eobs) — /dEV (I)far (Eu) : Posc

/

Want to know this
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Measuring Neutrino Oscillations
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e Can
o |
o (
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Nnear (Eobs) — /dEl/ (I)near <E1/) " W <E1/) ) Dnear

Nfar (Eobs) — /dEV (I)far (Ey) : Posc
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Oscillations at the Far Detector
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e Can
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Producing a Beam of Neutrinos

—] =

Proton beam

_

e Proton beam strikes a fixed target producing secondary hadrons:
mostly pions and kaons
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Producing a Beam of Neutrinos

—] [

Proton beam

_

e Proton beam strikes a fixed target producing secondary hadrons:
mostly pions and kaons

e These are sign-selected and focussed by one or more magnetic
horns.
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Producing a

—y

Proton beam

_

e Proton beam stri ) secondary hadrons:

mostly pions and

e These are sign-se b Or more magnetic

horns.
NuMI Horn Front View

Image Credit: FNAL
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Producing a Beam of Neutrinos
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Proton beam

_

e Proton beam strikes a fixed target producing secondary hadrons:
mostly pions and kaons

e These are sign-selected and focussed by one or more magnetic
horns.
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Producing a Beam of Neutrinos

—y

Proton beam

-

e Proton beam strikes a fixed target producing secondary hadrons:
mostly pions and kaons

e These are sign-selected and focussed by one or more magnetic
horns.

e Thissecondary beam of particles decays to produce neutrinos.
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Producing a Beam of Neutrinos

—y

Proton beam

-

Neutrino mode, focussing positive particles

e Proton beam strikes a fixed target producing secondary hadrons:
mostly pions and kaons

e These are sign-selected and focussed by one or more magnetic
horns.

e Thissecondary beam of particles decays to produce neutrinos.

e The horn current can be inverted to produce mostly anti-neutrinos
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Producing a Beam of Neutrinos

—y

v
Proton beam —

-

Anti-neutrino mode, focussing negative particles

e Proton beam strikes a fixed target producing secondary hadrons:
mostly pions and kaons

e These are sign-selected and focussed by one or more magnetic
horns.

e Thissecondary beam of particles decays to produce neutrinos.

e The horn current can be inverted to produce mostly anti-neutrinos
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Neutrinos On their Way
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Neutrinos On their Way

E, (GeV)
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https://link.springer.com/book/10.1007%2F978-3-319-65040-1
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Neutrinos On their Way Off Axis

e Boosted 1 decay kinematics result in lower energy neutrinos off beam
axis. /vv
Y
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https://link.springer.com/book/10.1007%2F978-3-319-65040-1
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Neutrinos On their Way Off Axis

E, (GeV)

|
e Boosted 1 decay kinematics result in lower energy neutrinos off beam
axis.
o Exploited by T2K and NOVA to achieve narrow-band beam for maximal oscillation signal
at first oscillation maximum O
3 ;

- "7 "K.Duffy Thesis' = = " T ] |, 05 elNf2y= U0
5 —— 6=00 - 2 ; Am3, = 2.4 x 107 eV? ]

[ —— 0=05 - ki —_— ]
4 ]

- . 1 it OA0.0°

[ 1 . 2 0A2.0° -
3E E = A S5 0A25°

- " < L
2| K s I !

- e ] % _ 0.5 _

- “ ) - |

1= " —P | 1!

I S Moo by tsomersen 7 _“  s J
) ST S SV NSNS SR SRS K ﬁ:J-PARCneutrinoflux

0 2 4 6 8 10 12 05 1 = ;

E; (GeV) Phys. Rev. D 87, 012001 E, (GeV)



https://journals.aps.org/prd/abstract/10.1103/PhysRevD.87.012001
https://link.springer.com/book/10.1007%2F978-3-319-65040-1

L. Pickering 29

On-axis Beams
The DUNE far detectors will sit on axis to be exposed to the wide band beam
GENIE 2.12.10, DUNE FD TDR CV Tune
— CC Inclusive CC 1p1h+2p2h
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Off Axis at the DUNE Near Detector
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Off Axis at the DUNE Near Detector
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Use a mobile Near Detector

@)

Sample different neutrino energy spectra
at different positions
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Off Axis at the DUNE Near Detector

e Use a mobile Near Detector
o Sample different neutrino energy spectra

at different positions

o Build up 2D exposure

E, (GeV)

T per 1 GeV)

@, (cm per
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Off Axis at the DUNE Near Detector

e Use a mobile Near Detector

o Sample different neutrino energy spectra
at different positions
o Build up 2D exposure
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Off Axis at the DUNE Near Detector

e Use a mobile Near Detector

o Sample different neutrino energy spectra
at different positions
o Build up 2D exposure
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Off Axis at the DUNE Near Detector

Off axis position (m)

Use a mobile Near Detector

O

@)

Sample different neutrino energy spectra
at different positions
Build up 2D exposure

Neutrinos/cm? per GeV per POT i

60

40

20

@, (cm? per POT per 1 GeV)
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Off Axis Near Detector Measurements
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-

e Mobile near detector allows us
to make cross-section
Mmeasurements in different

energy distributions:
o same detector
o same target material as FD

e DUNE's mobile near detector
opens up a new degree of
freedom never before used in
a cross-section measurement
programme.

10°® cm? /nucleon

—~ 0.5

e
S

GENIE 2.12.10, DUNE FD TDR CV Tune

—— CC Inclusive CC 1p1h+2p2h
—— CCRes 1n —— CCDIS
- 28 m l15 m lOn axis
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Off Axis Near Detector Measurements
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—

e Mobile near detector allows
us to make cross-section

GENIE 2.12.10, DUNE FD TDR CV Tune

1°rr g
ND-LAr ND-GAr
All int. Selected All int.
Stop Run duration | N, cc Nges WSB | NC N,,cc
On axis (293 kA) m 14 wks. 21.6M | 10.IM | 0.2% | 1.3% | 580,000
On axis (280 kA) m 1 wk. 1.5M | 690,000 | 0.3% | 1.3% | 40,000
4 m off axism 12 dys. 2.3M 12M | 0.3% | 1.0% | 61,000
8 m off axism 12 dys. 1.3M | 670,000 | 0.5% | 0.9% | 35,000
12 m off axism 12 dys. 650,000 | 330,000 | 0.8% | 0.7% | 17,000
16 m off axism 12 dys. 370,000 | 190,000 | 1.1% | 0.7% | 10,000
20 m off axism 12 dys. 230,000 | 120,000 | 1.3% | 0.7% | 6,200
24 m off axism 12 dys. 150,000 | 75,000 | 1.8% | 0.7% | 4,100
28 m off axism 12 dys. 110,000 | 50,000 | 2.1% | 0.8% | 2,900
30.5 m off axism 12 dys. 87,000 | 39,000 |2.3% | 0.7% | 2,300

cross-section measurement

programme.

g’ MICHIGAN STATE
UNIVERSITY
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Off Axis Near Detector Measurements
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e Mobile near detector allows
us to make cross-section

1°rr g
ND-LAr ND-GAr
All int. Selected All int.
Stop Run duration | N, cc Nges I WSB ] NC N,,cc
On axis (293 kA) m
On axis (280 kA) m
4 m off axism
8 m off axism
12 m off axism
16 m off axism
20 m off axism
24 m off axism
28 m off axism
30.5 m off axism TZays: [O7,UUU [ 39,000 [ 2370 [ U170 | 450U |

cross-section measurement
programme.

r‘ MICHIGAN STATE
UNIVERSITY

GENIE 2.12.10, DUNE FD TDR CV Tune
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A Quick Aside
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Discrete Fourier Transforms

—y

e Approximate function as a linear sum of
sines and cosines
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Amplitude (A.U.)

Discrete Fourier Transforms
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o
o

Approximate function as a linear sum of
sines and cosines
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Discrete Fourier Transforms
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e Approximate function as a linear sum of
sines and cosines
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Discrete Fourier Transforms
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e Approximate function as a linear sum of
sines and cosines
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Amplitude (A.U.)

Discrete Fourier Transforms
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Approximate function as a linear sum of
sines and cosines
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Discrete Fourier Transforms

e Approximate function as a linear sum of

Amplitude (A.U.)

sines anc
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Building an Oscillated Flux
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10-1

Want to measure oscillated flux at the near detector

FD Oscillated Flux

FD

Vy =

10
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f\\ - /(‘ \\\\ _



Building an Oscillated Flux

- POT per GeV]

2
cm - per

3
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I
.

w
L

(3]
L

—
L

Want to measure oscillated flux at the near detector

O

10-1%

Try to decompose into a linear sum of off-axis near detector fluxes (c.f. Discrete FT)

FD Oscillated Flux

FD v, — v,

(o]

10

[ X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]
X[7]

(I)near (Em Loff axis)

x10

30

Off axis position (m)

10

E, (GeV)

Neutrinos/cm? per GeV per POT b

x[O]-
x[1]
x[2]
x[3]
x[4]
X[5]
x[6]

x[71]



Building an Oscillated Flux
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Want to measure oscillated flux at the near detector

Try to decompose into a linear sum of off-axis near detector fluxes (c.f. Discrete FT)
Solve for weights at each off axis position

o
@]
@)
10-15 FD Oscillated Flux
54‘ FD v, — v,
g
e 0]
2
- 2 1
[
a
"T: 1
(=] 0 ! . ;
0 2 4 6 8 10
E, [GeV)
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X[4]
X[5]
X[6]
X[7]

(I)near (Eua Toff axis)

x10

30

Off axis position (m)

10

E, (GeV)
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x[O]-
x[1]
x[2]
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x[6]

x[71]

Linear combination weight
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Building an Oscillated Flux
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® [cm~2 per POT per GeV]

o

Want to measure oscillated flux at the near detector

x10~18

o Trytodecompose into a linear sum of off-axis near detector fluxes (c.f. Discrete FT)
o Solve for weights at each off axis position
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w
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Far detector x P(v, = v,)
293 kA Off axis 4 280 kA On axis
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Building ¢

e \Want to mea:s
o Trytodecon
o Solve for wei
o How good it

Discrete FT)

<1015 DUNE Preliminary Prcar (Ev, Toff axis)

- -9 - —
X[0] 2 : ‘ ] e | x[0]
] —— Far detector x P(v, — v,) & o -
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Off axis position (m)
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Building a Far Detector prediction

—

e Linear sum only depends on off axis position and flux prediction.

o The same weights can be applied to sampled interactions
o Inany observable quantity
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Off axis position (m)
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Building a Far Detector prediction

—

e Linear sum only depends on off axis position and flux prediction.

o The same weights can be applied to sampled interactions
o Inany observable quantity
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Building a Far Detector prediction
e Linear sum only depends on off axis position and flux prediction.

o The same weights can be applied to sampled interactions
o Inany observable quantity

Off axis position (m)

S C
Off axis Coefficient g 2= —e—— Far detector 'data’
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Other Linear Combinations
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e So far have used the linear
combinations to make

Mmeasurements in an oscillated flux.

o Not particularly useful for making
cross-section measurements.




L. Pickering 57

Other Linear Combinations

—

e So far have used the linear
combinations to make

Mmeasurements in an oscillated flux.

o Not particularly useful for making
cross-section measurements.

e Can linearly combine -
. 44 Fluxes up to 33.0m
Mmeasurements in other Ways:
o Most useful is to build narrow-band 3

'gaussian' fluxes
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GENIE 2.12.10, DUNE FD TDR CV Tune

° ° ° — CC Inclusive CC 1p1h+2p2h
Other Linear Combinatior  —ccrsx  —cooss
— g - 28 m l15 m lOn axis
. (6] - 2
e So far have used the linear 2 1t l -
combinations to make t L E
measurements in an oscillated flux. % [
o Not particularly useful for making ~x 05 B
cross-section measurements. U‘é I §
e Can linearly combine . ]
. 0
Mmeasurements in other Ways.
o Most useful is to build narrow-band 31
'gaussian' fluxes 5
o Significantly finer spectrum than 5: e
obtained by sampling at a single off axis < "
position.
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Capturing Some Nues
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—

-—
e Because of the different
tertiary meson beam decays 5 ore
that produce muon and § §
electron neutrinos, we expect % -
o 0.1

a higher proportion of

electron neutrinos off axis:

o Rates are low, but purity is
significantly higher

o Combine with on-axis
measurements to obtain
nue/numu cross-section
constraint that is vital for CPV
Mmeasurements!
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Summary

60

—

e Mobile near detector opens up a hew degree of freedom that is
strongly correlated with neutrino energy.

e Moving giant liquid argon detectors is fun and cool.
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Thanks for listening

PRISM
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Is this the only Game we can Play?
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10° ND Events/1 GeV

True Energy (GeV)
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Narrow-band fluxes 10

4{ — Gaussian  Fluxes up to 33m
e Also of interest to construct fine -~ Best matchy,

band flux measurements.

E. Smith, NOVA, NUFACT2019
——— ND data

Base Simulation

Data-Driven Prediction _ 2

FD Events/1 GeV
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https://indico.cern.ch/event/773605/contributions/3498114/attachments/1897026/3130086/ESmith_NOvA_NuFACT2019_8-26-2019.pdf

DUNE Near Detector Concept
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[
N\ '
ArgonCube: LAr TPC v %NDGN D ‘FU-— i
o Primary target, similar to FD — o e
8 54 gy
MPD: CAr TPC + ECal + i
O, (+]
Low mass magnet F
o Charge/momentum/PID ) o ‘
o Low threshold neutrino
target / 19
. vug P4 7
: 3D plastic
scintillator detector inside  ;,ue pretiminary NDLAr EV NDGAr EV
a superconducting All int. Selected All int.
solenoid: Run duration | Nv,CC NSel WSB | NC | Ny,CC
o Bearm monitor 1/2 yr. 25.5M | 11.3M | 0.2% | 1.4% | 680,000

o Neutrino interaction physics
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Building a Far Detector prediction

| |

e Linear sum only depends on off axis position and flux prediction.
o The same weights can be applied to sampled interactions
o Inany observable quantity

e The Power of PRISM:

o Predicted the far detector observable signal event rate for some oscillation hypothesis
o Have not yet invoked a neutrino interaction model!

Off axis position (m)
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How does that help?

(I)near (Eyaxoff axis) X G= (I)far (EV) Posc (El/>
<
%’0"“@
Nnear (Eobs) — /dEV a;&@‘”@\osz/) g (El/) . Dnear
9
Nfar (Eobs) — /dEz/ (I)far (Ez/> Posc (Ez/) o7 (Ez/> Dfar ; /C(
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How does that help?

(I)near (Eyaxoff axis) X G= (I)far (EV) Posc (El/>
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How does that help?

(I)near (Eyaxoff axis) X G= (I)far (EV) Posc (EI/>
<
%’0"“@
Nnear (Eobs) — /dEV a;\@‘”@\osz/) g (El/) . Dnear
e
Nfar (Eobs) — /dEz/ (I)far (Ez/) Posc (EI/) o (Ez/> Dfar ; /C(
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Special Horn Current Runs

Proton beam

_

e If we varythe current in the magnetic horns, we change their
momentum acceptance
r‘ MICHIGAN STATE Mo VE
“ UNIVERSITY P
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Special Horn Current Runs

Proton beam

_

If we vary the current in the magnetic horns, we change their

mMmomentum acceptance:
o For alower current, some higher energy pions might not be well focussed...
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Special Horn Current Runs

—

%108 ND On-Axis Flux Ratio to 293 kA _axg
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Special Horn Current Runs

| —
e Small variations are better: Ratio to 293 kA
o Lesschange in far detector T R
exposure 3 L 1300
e |Lower currents are better: o5
o Current horn and power supply T
designed with 293 kA as the 27 F200 =2

operating current.
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Special Horn Current Runs

| —
e Small variation are better: Ratio to 293 kA
o Lesschange in far detector T R
exposure 3 L 1300
e |Lower currents are better: o5
o Current horn and power supply T
designed with 293 kA as the 27 F200 =2

operating current.
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Special Horn Current Runs

—= =
e Including an on-axis run at
. . 10715
280 KA drastically improves = T
i @b 44 / —FD =
the flux matching! : f Off-axis Only
o Much less far detector model g ‘ g i
correction required. ‘; 21—
& 1
ER JW —
. "50%
SE 0%
22 -25%-
T S50% .
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