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● Heard from Cheryl a 
few weeks ago

● Look for signature 
oscillation wiggles in 
Far detector data

● Measure oscillations 
precisely enough to 
answer pressing 
fundamental physics 
questions.

DUNE Oscillation Goals

https://indico.fnal.gov/event/48900/contributions/216753/attachments/144074/182941/IntroToInteractions.pdf
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The DUNE Neutrino Flux
● Current generation experiments use narrow-band beams

○ Relatively narrow unknown neutrino-by-neutrino energy distribution
○ Smaller energy range to constrain interaction physics

● DUNE will use an wide band beam:
○ Access to physics at higher order oscillation maxima

First maximumSecond maximum



L. Pickering    7

Oscillations at the Far Detector

Number of near 
detector events = Flux Cross 
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effects∙ ∙
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● Can we not just look at near/far ratio?
○ Because it isn't that simple...
○ Convolution of detector effects with flux ∙ cross section
○ Cannot directly compare near and far observables to extract oscillations

Oscillations at the Far Detector

Want to know this

Possible Dream Scenario: Make near 
detector measurements in an oscillated flux

Blackadder: Know you of such a bird Flux?
Baldrick: No, but we could make one…
Blackadder: No Baldrick, you can't



L. Pickering    16

● DUNE Oscillation Physics Reminder
● The LBNF Beam
● Motivating DUNE-PRISM
● DUNE-PRISM as an analysis machine

This Talk



L. Pickering    17

Producing a Beam of Neutrinos

Proton beam

Fixed target
π+

π-

● Proton beam strikes a fixed target producing secondary hadrons: 
mostly pions and kaons



L. Pickering    18

Producing a Beam of Neutrinos

Proton beam

Fixed target

Focussing horn 1 Focussing horn 2

π+

π-

● Proton beam strikes a fixed target producing secondary hadrons: 
mostly pions and kaons

● These are sign-selected and focussed by one or more magnetic 
horns.



L. Pickering    19

Producing a Beam of Neutrinos

Proton beam

Fixed target

Focussing horn 1 Focussing horn 2

π+

π-

● Proton beam strikes a fixed target producing secondary hadrons: 
mostly pions and kaons

● These are sign-selected and focussed by one or more magnetic 
horns.

Image Credit: FNAL

NuMI Horn Front View
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Producing a Beam of Neutrinos

● Proton beam strikes a fixed target producing secondary hadrons: 
mostly pions and kaons

● These are sign-selected and focussed by one or more magnetic 
horns.

● This secondary beam of particles decays to produce neutrinos.

● The horn current can be inverted to produce mostly anti-neutrinos
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Producing a Beam of Neutrinos

● Proton beam strikes a fixed target producing secondary hadrons: 
mostly pions and kaons

● These are sign-selected and focussed by one or more magnetic 
horns.

● This secondary beam of particles decays to produce neutrinos.

● The horn current can be inverted to produce mostly anti-neutrinos

Proton beam

Fixed target

Focussing horn 1 Focussing horn 2

π+

π-

Anti-neutrino mode, focussing negative particles

𝛍-

𝛎
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K. Duffy Thesis

𝛎
𝛍

π

Neutrinos On their Way

https://link.springer.com/book/10.1007%2F978-3-319-65040-1
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● Boosted π decay kinematics result in lower energy neutrinos off beam 
axis.

K. Duffy Thesis

𝛎

𝛍𝛎
𝛍

π

Neutrinos On their Way Off Axis

https://link.springer.com/book/10.1007%2F978-3-319-65040-1
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● Boosted π decay kinematics result in lower energy neutrinos off beam 
axis.
○ Exploited by T2K and NOvA to achieve narrow-band beam for maximal oscillation signal 

at first oscillation maximum

Phys. Rev. D 87, 012001

K. Duffy Thesis

J-PARC neutrino flux

Neutrinos On their Way Off Axis

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.87.012001
https://link.springer.com/book/10.1007%2F978-3-319-65040-1
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On-axis Beams
The DUNE far detectors will sit on axis to be exposed to the wide band beam

First maximum

Second maximum
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Off Axis at the DUNE Near Detector
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28.5 m
● Use a mobile Near Detector

○ Sample different neutrino energy spectra 
at different positions

DUNE Preliminary

DUNE Preliminary
𝛎

𝛎 𝛎

𝛎
𝛎

DUNE Near
Flux

Off Axis at the DUNE Near Detector
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● Use a mobile Near Detector
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𝛎

𝛎 𝛎

𝛎
𝛎

DUNE Preliminary

DUNE Preliminary

DUNE Near
Flux

● Use a mobile Near Detector
○ Sample different neutrino energy spectra 

at different positions
○ Build up 2D exposure

28.5 m

Off Axis at the DUNE Near Detector



L. Pickering    35

𝛎

𝛎 𝛎
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DUNE Preliminary

DUNE Preliminary

DUNE Near
Flux

● Use a mobile Near Detector
○ Sample different neutrino energy spectra 

at different positions
○ Build up 2D exposure

28.5 m

Off Axis at the DUNE Near Detector
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● Mobile near detector allows us 
to make cross-section 
measurements in different 
energy distributions:
○ same detector
○ same target material as FD

● DUNE's mobile near detector 
opens up a new degree of 
freedom never before used in 
a cross-section measurement 
programme.

Off Axis Near Detector Measurements
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● Mobile near detector allows 
us to make cross-section 
measurements in different 
energy distributions:
○ same detector
○ same target material

● DUNE's mobile near 
detector opens up a new 
degree of freedom never 
before used in a 
cross-section measurement 
programme.

Off Axis Near Detector Measurements

But can we do even better…?
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A Quick Aside
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sines and cosines



L. Pickering    42

Discrete Fourier Transforms

● Approximate function as a linear sum of 
sines and cosines
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Image:Fourierop_rows_only.png., CC BY-SA 3.0, 
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Discrete Fourier Transforms

● Approximate function as a linear sum of 
sines and cosines

By Original by en:User:Glogger, vectorization by User:SidShakal. - 
Hand-traced in Inkscape, based on 
Image:Fourierop_rows_only.png., CC BY-SA 3.0, 
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Not bad!
Building square things out 
of curvy things isn't easy 

though...
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Discrete Fourier Transforms

● Approximate function as a linear sum of 
sines and cosines

By Original by en:User:Glogger, vectorization by User:SidShakal. - 
Hand-traced in Inkscape, based on 
Image:Fourierop_rows_only.png., CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=3570075
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Maybe we can play a similar game with 

the DUNE near detector...
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Building an Oscillated Flux

DUNE Preliminary

● Want to measure oscillated flux at the near detector
○ Try to decompose into a linear sum of off-axis near detector fluxes (c.f. Discrete FT)
○ Solve for weights at each off axis position
○ How good is the approximation?

DUNE Near
Flux
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Building a Far Detector prediction
● Linear sum only depends on off axis position and flux prediction.
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= Predicted FD 
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Building a Far Detector prediction
● Linear sum only depends on off axis position and flux prediction.

○ The same weights can be applied to sampled interactions
○ in any observable quantity

X =
Measured
ND Event Rate
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● So far have used the linear 
combinations to make 
measurements in an oscillated flux.
○ Not particularly useful for making 

cross-section measurements.

● Can linearly combine 
measurements in other ways:
○ Most useful is to build narrow-band 

'gaussian' fluxes
○ Significantly finer spectrum than 

obtained by sampling at a single off axis 
position.

Other Linear Combinations
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● Because of the different 
tertiary meson beam decays 
that produce muon and 
electron neutrinos, we expect 
a higher proportion of 
electron neutrinos off axis:
○ Rates are low, but purity is 

significantly higher
○ Combine with on-axis 

measurements to obtain 
nue/numu cross-section 
constraint that is vital for CPV 
measurements! 

Capturing Some Nues

ND  𝛎e/𝛎𝛍



L. Pickering    60

● Mobile near detector opens up a new degree of freedom that is 
strongly correlated with neutrino energy.

● Moving giant liquid argon detectors is fun and cool.

Summary

28.5 m



Thanks for listening

L. Pickering    



L. Pickering    62

Is this the only Game we can Play?
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Narrow-band fluxes
● Also of interest to construct fine 

band flux measurements.
○ Can be used to probe the ‘true’ 

reconstructed energy bias and 
inform simulation improvements

E. Smith, NOvA, NUFACT2019

Gaussian
Best match

DUNE Preliminary

https://indico.cern.ch/event/773605/contributions/3498114/attachments/1897026/3130086/ESmith_NOvA_NuFACT2019_8-26-2019.pdf
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DUNE Near Detector Concept
● ArgonCube: LAr TPC

○ Primary target, similar to FD

● MPD: GAr TPC + ECal + 
Low mass magnet
○ Charge/momentum/PID
○ Low threshold neutrino 

target

● SAND: 3D plastic 
scintillator detector inside 
a superconducting 
solenoid:
○ Beam monitor
○ Neutrino interaction physics

MPD FVDUNE Preliminary

𝛎
𝛎

𝛎

𝛎

SAND

𝛎 NDGAr

NDGAr FVNDLAr FV

NDLAr
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Building a Far Detector prediction
● Linear sum only depends on off axis position and flux prediction.

○ The same weights can be applied to sampled interactions
○ in any observable quantity

● The Power of PRISM:
○ Predicted the far detector observable signal event rate for some oscillation hypothesis
○ Have not yet invoked a neutrino interaction model!

X =
Measured
ND Event Rate
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How does that help?
● Use the PRISM method to build:
● Cross sections are not position dependent
● When we pick the correct oscillation hypothesis:

○ Signal event rates are the same near and far! 
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Special Horn Current Runs

● If we vary the current in the magnetic horns, we change their 
momentum acceptance

Proton beam

Fixed target

Focussing horn 1 Focussing horn 2

π+
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𝛎
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Special Horn Current Runs

● If we vary the current in the magnetic horns, we change their 
momentum acceptance:
○ For a lower current, some higher energy pions might not be well focussed...

Proton beam

Fixed target

Focussing horn 1 Focussing horn 2

π+

π-

𝛎

𝛍+
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Special Horn Current Runs

Ratio to 293 kA
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Ratio to 293 kA● Small variations are better:
○ Less change in far detector 

exposure

● Lower currents are better:
○ Current horn and power supply 

designed with 293 kA as the 
operating current. 
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Special Horn Current Runs

Ratio to 293 kA● Small variation are better:
○ Less change in far detector 

exposure

● Lower currents are better:
○ Current horn and power supply 

designed with 293 kA as the 
operating current. 

● 280 kA looks useful
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Special Horn Current Runs

● Including an on-axis run at 
280 kA drastically improves 
the flux matching!
○ Much less far detector model 

correction required.


