Near Detector Analyses with

Luke Pickering
DUNE Neutrino
Interaction School 2021
2021-06-29

This Talk

- DUNE Oscillation Physics Reminder
- The LBNF Beam
- Motivating DUNE-PRISM
- DUNE-PRISM as an analysis machine

This Talk

- **DUNE Oscillation Physics Reminder**
- The LBNF Beam
- Motivating DUNE-PRISM
- DUNE-PRISM as an analysis machine

DUNE Oscillation Goals

- Heard from <u>Cheryl</u> a few weeks ago
- Look for signature oscillation wiggles in Far detector data
- Measure oscillations precisely enough to answer pressing fundamental physics questions.

The DUNE Neutrino Flux

- Current generation experiments use narrow-band beams
 - Relatively narrow unknown neutrino-by-neutrino energy distribution
 - Smaller energy range to constrain interaction physics

The DUNE Neutrino Flux

- Current generation experiments use narrow-band beams
 - o Relatively narrow unknown neutrino-by-neutrino energy distribution
 - Smaller energy range to constrain interaction physics
- DUNE will use an wide band beam:

Oscillations at the Far Detector

Measuring Neutrino Oscillations

Can we not just look at near/far ratio?

- Can we not just look at near/far ratio?
 - o It isn't quite that simple...

$$N_{
m near}\left(E_{
m obs}\right) = \int dE_{
u} \Phi_{
m near}\left(E_{
u}\right) \cdot \sigma\left(E_{
u}\right) \cdot \mathbf{D}_{
m near}$$

$$N_{
m far}\left(E_{
m obs}
ight) = \int dE_{
u} \Phi_{
m far}\left(E_{
u}
ight) \cdot P_{osc}\left(E_{
u}
ight) \cdot \sigma\left(E_{
u}
ight) \cdot \mathbf{D}_{
m far}$$

Want to know this

Measuring Neutrino Oscillations

- Can we not just look at near/far ratio?
 - o It isn't quite that simple...
 - Convolution of detector effects with flux · cross section
 - o Cannot directly compare near and far observables to extract oscillations

$$N_{
m near}\left(E_{
m obs}
ight) = \int dE_{
u} \; \Phi_{
m near}\left(E_{
u}
ight) \cdot \sigma\left(E_{
u}
ight) \cdot \mathbf{D}_{
m near}$$
 $N_{
m far}\left(E_{
m obs}
ight) = \int dE_{
u} \; \Phi_{
m far}\left(E_{
u}
ight) \cdot \mathbf{P}_{osc}\left(E_{
u}
ight) \cdot \sigma\left(E_{
u}
ight) \cdot \mathbf{D}_{
m far}$
Want to know this

Measuring Neutrino Oscillations

- Can
- Possible Dream Scenario: Make near detector measurements in an oscillated flux

$$N_{
m near}\left(E_{
m obs}
ight) = \int dE_{
u} \, \Phi_{
m near}\left(E_{
u}
ight) \cdot \sigma\left(E_{
u}
ight) \cdot {f D}_{
m near}$$

$$N_{\mathrm{far}}(E_{\mathrm{obs}}) = \int dE_{\nu} \Phi_{\mathrm{far}}(E_{\nu}) \cdot P_{osc}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \mathbf{D}_{\mathrm{far}}$$

Want to know this

Oscillations at the Far Detector

$$N_{\rm near}\left(E_{\rm obs}\right)$$
 =

$$N_{\rm far}\left(E_{
m obs}\right) = \int d$$

This Talk

- DUNE Oscillation Physics Reminder
- The LBNF Beam
- Motivating DUNE-PRISM
- DUNE-PRISM as an analysis machine

 Proton beam strikes a fixed target producing secondary hadrons: mostly pions and kaons

- Proton beam strikes a fixed target producing secondary hadrons: mostly pions and kaons
- These are sign-selected and focussed by one or more magnetic horns.

Producing a

Focus

Proton beam

Fixed t

- Proton beam stril mostly pions and
- These are sign-se horns.

secondary hadrons:

or more magnetic

- Proton beam strikes a fixed target producing secondary hadrons: mostly pions and kaons
- These are sign-selected and focussed by one or more magnetic horns.

- Proton beam strikes a fixed target producing secondary hadrons: mostly pions and kaons
- These are sign-selected and focussed by one or more magnetic horns.
- This secondary beam of particles decays to produce neutrinos.

- Proton beam strikes a fixed target producing secondary hadrons: mostly pions and kaons
- These are sign-selected and focussed by one or more magnetic horns.
- This secondary beam of particles decays to produce neutrinos.
- The horn current can be inverted to produce mostly anti-neutrinos

- Proton beam strikes a fixed target producing secondary hadrons: mostly pions and kaons
- These are sign-selected and focussed by one or more magnetic horns.
- This secondary beam of particles decays to produce neutrinos.
- The horn current can be inverted to produce mostly anti-neutrinos

Neutrinos On their Way

Neutrinos On their Way

Neutrinos On their Way

Neutrinos On their Way Off Axis

• Boosted π decay kinematics result in lower energy neutrinos off beam axis.

Neutrinos On their Way Off Axis

Boosted π decay kinematics result in lower energy neutrinos off beam axis.

Exploited by T2K and NOvA to achieve narrow-band beam for maximal oscillation signal at first oscillation maximum $\sin^2 2\theta_{23} = 1.0$ P(v_µ . $\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$ ₩₩ OA 0.0° **## OA 2.0°** ₩ OA 2.5° $\theta = 2.5$ J-PARC neutrino flux E_{π} (GeV) Phys. Rev. D 87, 012001 E_v (GeV)

On-axis Beams

The DUNE far detectors will sit on axis to be exposed to the wide band beam

- Use a mobile Near Detector
 - Sample different neutrino energy spectra at different positions

L. Pickering

32

- Use a mobile Near Detector
 - Sample different neutrino energy spectra at different positions
 - Build up 2D exposure

- Use a mobile Near Detector
 - Sample different neutrino energy spectra at different positions
 - Build up 2D exposure

- Use a mobile Near Detector
 - Sample different neutrino energy spectra at different positions
 - Build up 2D exposure

- Use a mobile Near Detector
 - Sample different neutrino energy spectra at different positions
 - Build up 2D exposure

Off Axis Near Detector Measurements

- Mobile near detector allows us to make cross-section measurements in different energy distributions:
 - same detector
 - same target material as FD
- DUNE's mobile near detector opens up a new degree of freedom never before used in a cross-section measurement programme.

Off Axis Near Detector Measurements

 Mobile near detector allows us to make cross-section

		•	1.00		/ .	_
			ND-LA	ND-GAr		
		All int.	Selected		All int.	
Stop	Run duration	$N_{ u_{\mu}CC}$	N_{Sel}	WSB	NC	$N_{ u_{\mu}CC}$
On axis (293 kA) m	14 wks.	21.6M	10.1M	0.2%	1.3%	580,000
On axis (280 kA) m	1 wk.	1.5M	690,000	0.3%	1.3%	40,000
4 m off axis m	12 dys.	2.3M	1.2M	0.3%	1.0%	61,000
8 m off axis m	12 dys.	1.3M	670,000	0.5%	0.9%	35,000
12 m off axis m	12 dys.	650,000	330,000	0.8%	0.7%	17,000
16 m off axis m	12 dys.	370,000	190,000	1.1%	0.7%	10,000
20 m off axis m	12 dys.	230,000	120,000	1.3%	0.7%	6,200
24 m off axis m	12 dys.	150,000	75,000	1.8%	0.7%	4,100
28 m off axis m	12 dys.	110,000	50,000	2.1%	0.8%	2,900
30.5 m off axis m	12 dys.	87,000	39,000	2.3%	0.7%	2,300

cross-section measurement programme.

Off Axis Near Detector Measurements

This Talk

- DUNE Oscillation Physics Reminder
- The LBNF Beam
- Motivating DUNE-PRISM
- DUNE-PRISM as an analysis machine

 Approximate function as a linear sum of sines and cosines

Approximate function as a linear sum of sines and cosines

By Original by en:User:Glogger, vectorization by User:SidShakal. -Hand-traced in Inkscape, based on Image:Fourierop_rows_only.png., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3570075

Approximate function as a linear sum of sines and cosines

By Original by en:User:Glogger, vectorization by User:SidShakal. -Hand-traced in Inkscape, based on Image:Fourierop_rows_only.png., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3570075

0.5 Frequency (A.U.)

-0.5

 Approximate function as a linear sum of sines and cosines

Time (A.U.) By Original by en:User:Glogger, vectorization by User:SidShakal. - Hand-traced in Inkscape, based on Image:Fourierop_rows_only.png., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3570075

Approximate function as a linear sum of sines and cosines

Hand-traced in Inkscape, based on Image:Fourierop_rows_only.png., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3570075

Approximate function as a linear sum of

Maybe we can play a similar game with the DUNE near detector...

Tiania tracca in inivocape, pasca on

Image:Fourierop_rows_only.png., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3570075

Want to measure oscillated flux at the near detector

- Want to measure oscillated flux at the near detector
 - Try to decompose into a linear sum of off-axis near detector fluxes (c.f. Discrete FT)

- Want to measure oscillated flux at the near detector
 - Try to decompose into a linear sum of off-axis near detector fluxes (c.f. Discrete FT)
 - Solve for weights at each off axis position

- Want to measure oscillated flux at the near detector
 - Try to decompose into a linear sum of off-axis near detector fluxes (c.f. Discrete FT)
 - Solve for weights at each off axis position
 - How good is the approximation?

Building a

- Want to meas
 - Try to decon
 - Solve for wei
 - How good is

Discrete FT)

This Talk

- DUNE Oscillation Physics Reminder
- The LBNF Beam
- Motivating DUNE-PRISM
- DUNE-PRISM as an analysis machine

Building a Far Detector prediction

- Linear sum only depends on off axis position and flux prediction.
 - The same weights can be applied to sampled interactions
 - o in any observable quantity

- Linear sum only depends on off axis position and flux prediction.
 - The same weights can be applied to sampled interactions
 - o in any observable quantity

Building a Far Detector prediction

- Linear sum only depends on off axis position and flux prediction.
 - The same weights can be applied to sampled interactions
 - in any observable quantity

Other Linear Combinations

- So far have used the linear combinations to make measurements in an oscillated flux.
 - Not particularly useful for making cross-section measurements.

Other Linear Combinations

- So far have used the linear combinations to make measurements in an oscillated flux.
 - Not particularly useful for making cross-section measurements.
- Can linearly combine measurements in other ways:
 - Most useful is to build narrow-band 'gaussian' fluxes

Other Linear Combination

- So far have used the linear combinations to make measurements in an oscillated flux.
 - Not particularly useful for making cross-section measurements.
- Can linearly combine measurements in other ways:
 - Most useful is to build narrow-band
 'gaussian' fluxes
 - Significantly finer spectrum than obtained by sampling at a single off axis position.

Capturing Some Nues

- Because of the different tertiary meson beam decays that produce muon and electron neutrinos, we expect a higher proportion of electron neutrinos off axis:
 - Rates are low, but purity is significantly higher
 - Combine with on-axis measurements to obtain nue/numu cross-section constraint that is vital for CPV measurements!

Summary

- Mobile near detector opens up a new degree of freedom that is strongly correlated with neutrino energy.
- Moving giant liquid argon detectors is fun and cool.

Thanks for listening

Is this the only Game we can Play?

Narrow-band fluxes

- Also of interest to construct fine band flux measurements.
 - Can be used to probe the 'true' reconstructed energy bias and inform simulation improvements

DUNE Near Detector Concept

- ArgonCube: LAr TPC
 - o Primary target, similar to FD
- MPD: GAr TPC + ECal +
 Low mass magnet
 - o Charge/momentum/PID
 - Low threshold neutrino target
- SAND: 3D plastic scintillator detector inside a superconducting solenoid:
 - Beam monitor
 - Neutrino interaction physics

DUNE Preliminary		NDGAr FV			
	All int.	Selected			All int.
Run duration	$N\nu_{\mu}CC$	NSel	WSB	NC	$N\nu_{\mu}CC$
$\frac{1}{2}$ yr.	25.5M	11.3M	0.2%	1.4%	680,000

Building a Far Detector prediction

- Linear sum only depends on off axis position and flux prediction.
 - The same weights can be applied to sampled interactions
 - in any observable quantity
- The Power of PRISM:
 - o Predicted the far detector observable signal event rate for some oscillation hypothesis
 - Have not yet invoked a neutrino interaction model!

• Use the PRISM method to build: $\Phi_{\text{near}}\left(E_{\nu}, x_{\text{off axis}}\right) \times \vec{c} = \Phi_{\text{far}}\left(E_{\nu}\right) P_{osc}\left(E_{\nu}\right)$

$$N_{
m near}\left(E_{
m obs}
ight) = \int dE_{
u} \, \Phi_{
m F
u}, {
m toff}_{
m off} \, {
m axis} \, {
m d} \, {
m C}_{
u}
ight) \cdot {
m D}_{
m near}$$

$$N_{
m far}\left(E_{
m obs}
ight) = \int dE_{
u} \Phi_{
m far}\left(E_{
u}
ight) \cdot P_{osc}\left(E_{
u}
ight) \cdot \sigma\left(E_{
u}
ight) \cdot D_{
m far}$$

How does that help?

- Use the PRISM method to build: $\Phi_{\text{near}}(E_{\nu}, x_{\text{off axis}}) \times \vec{c} = \Phi_{\text{far}}(E_{\nu}) P_{osc}(E_{\nu})$
- Cross sections are not position dependent

$$N_{
m near}\left(E_{
m obs}
ight) = \int dE_
u \, \Phi_{
m F} \left(E_
u
ight) \cdot \sigma\left(E_
u
ight) \cdot {f D}_{
m near}$$

$$N_{
m far}\left(E_{
m obs}
ight) = \int dE_{
u} \, \Phi_{
m far}\left(E_{
u}
ight) \cdot P_{osc}\left(E_{
u}
ight) \cdot \sigma\left(E_{
u}
ight) \cdot \mathbf{D}_{
m far}$$

How does that help?

- Use the PRISM method to build: $\Phi_{\text{near}}\left(E_{\nu}, x_{\text{off axis}}\right) \times \vec{c} = \Phi_{\text{far}}\left(E_{\nu}\right) P_{osc}\left(E_{\nu}\right)$
- Cross sections are not position dependent
- When we pick the correct oscillation hypothesis:
 - Signal event rates are the same near and far!

$$N_{
m near}\left(E_{
m obs}
ight) = \int dE_{
u} \, \Phi_{
m Fiv} \, \Phi_{
m off} \, _{
m ox} \, _{
m ext} \, _{
m ox} \, _{
m$$

If we vary the current in the magnetic horns, we change their momentum acceptance

- If we vary the current in the magnetic horns, we change their momentum acceptance:
 - For a lower current, some higher energy pions might not be well focussed...

- Small variations are better:
 - Less change in far detector exposure
- Lower currents are better:
 - Current horn and power supply designed with 293 kA as the operating current.

- Small variation are better:
 - Less change in far detector exposure
- Lower currents are better:
 - Current horn and power supply designed with 293 kA as the operating current.
- 280 kA looks useful

- Including an on-axis run at 280 kA drastically improves the flux matching!
 - Much less far detector model correction required.

