Vertical Drift Photon Detector (VD PD)

Ettore Segreto (UNICAMP) Flavio Cavanna (FERMILAB)

28 April 2021

- (min) Requirements and VD PD matching

- The VD Reference PD System (PDS):

- Main Features: LY maps, energy resolution and position resolution.
- •Low En UG Physics with a ~4pi PDS
- Cost estimate (from WBS)
- The VD Backup PDS option:
- Main Features: LY maps matching min requirements (t0 for TPC)
- Cost estimate

- <u>R&D toward VD Reference PDS:</u>

- •The challenge & the solutions under development
- The achievements so far:
- -xARAPUCA Tile (improvements)
- -Power over Fiber
- -[Analog] CE+Transmission
 - [Digital] CE + Transmission (in progress)
- •Formation of VD PD core-group

-Summary

DUNE

PD HD Requirements

Label	Description	Specification (Goal)	Rationale	Validation
SP-FD-3	Light yield	> 20 PE/MeV (avg.) > 0.5 PE/MeV (min.)	Gives PDS energy resolution comparable to that of the TPC for 5-7 MeV SN ν s, and allows tagging of > 99% of nucleon decay backgrounds with light at all points in de- tector.	Supernova and nu- cleon decay events in the FD with full simulation and re- construction.
SP-FD-4	Time resolution	$< 1 \mu s$ (< 100 ns)	Enables 1 mm position reso- lution for 10 MeV SNB can- didate events for instanta- neous rate $< 1 \mathrm{m^{-3}ms^{-1}}$.	

The Physics requirements have been translated into detector requirements through detailed full simulations of the SP HD far detector and of large samples of Supernova and nucleon decay events and rad. Background

Path towards PD VD Detector Requirements

- performance \Rightarrow expanding Physics reach with VD PDS
- The full MC Simulation study for HD PD Requirements is a solid starting point for the VD PD Minimum Requirement determination
- Current assumption:

T₀ tagging for nucleon decay background events everywhere inside the VD active volume

Based on these Requirement assumptions, two design options have been identified

• The new VD TPC design offers more flexibility/less mechanical constraints than in the HD for the design of the PDS \Rightarrow possibility of enhancing PDS

• There are major differences in dimensions (longer light source-detector distances) and distribution of photo-sensitive area around the LAr active volume

• to keep $\langle LY \rangle = 20$ PE/MeV [HD Requirement] as VD Minimum Requirement - related to the average Energy Resolution of the VD PDS

• to re-evaluate the $\langle LY_{Min} \rangle$ Requirement for VD. For now, keep $\langle LY_{Min} \rangle = 0.5$ PE/MeV [HD Requirement] as VD Minimum Requirement - related to

[both based on xARAPUCA technology for light detection \oplus Xe-doping - 0(10 ppm)]

DUNE

VD PDS Options: Reference ~4pi Design and Backup Design

4 pi layout :

- Full trigger capabilities down to 10 MeV
- Energy, Position and TO
- xArapucas 60x60 on the cathode, 115 mq, analog readout
- xArapucas 60x60 on the cryo membrane, ~3m from Cathode

the VD Reference design

- The VD PDS reference design has different and more performant objectives than those of the design and power dissipation in LAr within the same limits as the HD PDS.
- Energy range.
- design.
- problems with time

implemented in HD PDS, by exploiting the greater flexibility of the new VD TPC mechanics, while keeping costs

• The main objective in the VD PDS Reference design is to make the LY uniform throughout the volume and higher on average, so as to be able to perform calorimetry and space reconstruction (and therefore also Trigger with max efficiency) down to a very low threshold \Rightarrow enabling extension of DUNE Physics reach in the UG Low

• The added risk is from operating PDS on HV planes (i.e. requiring transmission of Power and Signal over fiber)

• The HD requirements are comfortably met in the VD Reference design. The HD requirements thus represent the *minimum requirements* for VD, while the VD goals are more stringent and ambitious - and motivate the 4pi

• Risk Opportunity: the Reference Photon Detector is completely independent and redundant to the Charge TPC. This represents a big risk mitigation for physics if the TPC needs some maintenance period or will show some

- The all-membrane Backup option is a minor variation of the horizontal drift detector, and as such is already well-developed and carries low risk

- All VD-specific portions of the backup design will be developed as part of the preparations for the reference system.
- been found and will be tested in a dedicated test stand at CERN

<u>Why choose the Cathode & Membrane mounted as the reference design?</u>

- The reference design presents the opportunity to greatly increase the performance of the VD PD system, with a cost no greater than the all-membrane option

R&D plan to address the risks and we have a low-risk backup plan if necessary.

- The backup design, as well as the reference design, require a more transparent (70%) field cage (FC) for which a solution has

- While there are risks associated with the power over fiber and fiber readout required for the reference design, we have a robust

LBNC April 28 2021: Vertical Drift Technical Review

Why choose Xe doping as baseline option?

The collected light is found to be larger for Xe-doped Argon, due to the effect of the longer Rayleigh scattering length enhancing collection probability for light emitted at longer distances from the photon-detectors (+30% in VD - from MC simulation)

This supports the choice of Xe-doped Ar as scintillation medium in VD.

The VD PD Reference Design

Reference Design

4 pi layout :

- Full trigger capabilities down to 10 MeV
- Energy, Position and T0
- xArapucas 60x60 on the cathode, 115 mq, analog readout
- xArapucas 60x60 on the cryo membrane, ~3m from anode

Reference design for the VD PD System

PD Active Optical Coverage distributed onto 3 sides of the LAr Volume

(Cathode side and 2 Long Membrane Cryostat sides, w/ modified FC - 70% T)

+

PD Passive Optical Coverage (reflector) on the Anode side

╈

Xe doping (minimize Rayleigh scatter for light at far distance)

The Reference design endorses the $\sim 4\pi$ coverage concept (originally suggested in the VD proposal):

 \Rightarrow good uniformity of response, very low detection&trigger threshold, energy resolution and position resolution capability

• Detailed study of PD impact on LowEn UG Physics (trigger and reconstruction, combined with TPC) is the main

goal of the current DUNE Simulation Task Force effort

LBNC April 28 2021: Vertical Drift Technical Review

Assuming 24000 photons per MeV of energy deposited (70% for Xe and 30% for Ar) and 3% detection efficiency

Baseline geometry

Light Yield: Ar + Xe and different anode reflection

Enlarging the DUNE Physics Scope

SuperNova

Solar

- CoreCollapse SN is the most spectacular phenomenon in Nature and is imprinted in neutrino signal
- Low energy UG neutrinos opened discovery space in particle and astro-particle physics
- It is critical to DUNE Science Program to succeed at measuring low energies rare UG neutrinos

- It is is critical to lower Trigger E-threshold to extend range of SN detection (toward and beyond Galaxy edge).
- It is critical to guarantee good Time resolution and improve Energy resolution for SN-signatures in time & energy spectra

Reference Design Cathode + 40% Membrane Cost Splits

	Quantity	Surface Type
X-ARAPUCA Tiles	640	320 double-side [Cathode Plane]
		320 single-side [Membrane Two Long Walls]
Dichroic Filters	34,560	
WLS plates	640	
PhotoSensors (SiPM)	102,400	51,200 [Cathode plane]
		51,200 [Membrane Two Long Walls]
Read-out Channels	640	320 [Cathode plane]
		320 [Membrane Two Long Walls]
SiPMs per channel	160	[Cathode plane]
	160	[Field Cage walls]
Total Optical Area	346 m^2	$115 \text{ m}^2 + 115 \text{ m}^2$ [Cathode Plane]
		$58 \text{ m}^2 + 58 \text{ m}^2$ [Membrane Long Walls]
Active coverage	14%	[Cathode Plane]
	8%	[Membrane Long Walls]
	0%	[Membrane Short Walls]

	Vertical Drift Photon Detector System Summary					
	Item	Cos	t/Each	Cos	t/System	
	Cathode PDS					
	Cathode Mount Tiles	\$	6,220	\$	1,990,272	
	Cathode Tile Mount Electronics	\$	4,200	\$	336,000	
Cathode contribution	Cathode Non-Tile Mount Electronics	\$	2,500	\$	100,000	
of core production	Cathode Warm Electronics	\$	30,000	\$	60,000	
/&S (i.e. \$3.3M):	Cathode Power-over-Fiber	\$	1,320	\$	422,507	
	Total Cathode System			\$	2,908,779	
	HD-based Cathode Calibration/Monitoring System			\$	282,236	
$0^{0/}$ membrane (220	Membrane	Electro	nics Cost:	\$	578,000	
les) core production	Membrane Detector Cost:			\$	1,633,536	
1&S (i.e. \$2.8M)	Membrane Warm Electronics Cost: \$ 2			216,000		
	Total M	/lembr	ane M&S:	\$	2,427,536	

Production M&S of Cathode+40% membrane is \$6M + travel costs and test stands and production infrastructure = **<u>\$6.3M</u>**

R&D FY21 \$0.8M labor \$0.2M M&S Prototype and long-term validation \$0.5M labor \$0.2M M&S ProtoDUNE2 1/20th scale Pilot \$0.3M labor \$0.7M M&S Production \$2.8M labor \$6.3M M&S Total Reference Design: \$10.8 M

The VD PDS Backup Design

Minimal layout:

- **TO,** (E)

- xArapucas 60x60 on the cryo membrane, 20 columns, each column 18 xArapucas, SPHD readout

- Trigger via charge TPC readout down to 10 MeV

Simulation (FLUKA)

17/37

Assuming 24000 photons per MeV of energy deposited (70% for Xe and 30% for Ar) and 3.5% detection efficiency

- Integrated over all Z positions (includes edge effects)
- < LY > = 21.3 p.e./MeV
- $< LY >_{min} = 7.7 \text{ p.e./MeV}$

Membrane-only Cost Splits

Table 5: VD PDS Backup Configuration						
	Quantity	Surface Type				
X-ARAPUCA Tiles	720	single-side [Membrane Two Long Walls]				
Dichroic Filters	25,920					
WLS plates	6720					
PhotoSensors (SiPM)	115,200	[all-Membrane Two Long Walls]				
Read-out Channels	720	[all-Membrane Two Long Walls]				
SiPMs per channel	160					
Total Optical Area	260 m^2	$130 \text{ m}^2 + 130 \text{ m}^2$ [Membrane Long Wal				
Active coverage	15 %	[Membrane Long Walls]				
	0%	[Membrane Short Walls]				

Membrane Electronics Cost:	\$	1,300,500
Membrane Detector Cost:	\$	3,675,456
Membrane Warm Electronics Cost:	\$	430,000
Total Membrane M&S:	\$	5,405,956
	_	

+ travel costs and test stands and production infrastructure = \$6.1M

Membrane-only contribution of core production M&S (i.e. \$5.7M

Prototype and	long-term validati	(
– \$0.3M labor	\$0.1M M&S	

- ProtoDUNE2 1/20th scale Pilot
 - \$0.3M labor \$0.6M M&S
- Production
 - \$6.1M M&S – \$3.1M labor
- Total Backup Design:

\$10.5 M

The R&D phase for the Reference PD design

View from inside the Upper Volume with PD instrumented Cathode (below) and PD instrumented Membrane behind the FC

View from inside the Lower Volume with PD instrumented Cathode (above) and PD instrumented Membrane behind the FC

modified FC - 70% T

View of the Lower Volume from behind the FC, as seen by the Membrane PD modules

Operating PD on HV surface (Cathode) requires

- electrically floating Photo-sensors and r/o Electronics
- ⇒ Power (IN) and Signal (OUT) transmitted via non-conductive cables (e.g. optical fibers)

⇒ none of the commercially available technologies (PoF and optolinks) is rated to operate in Cold (at LAr Temperature)

- A highly specialized R&D has been launched (mid Feb.'21) and is currently ongoing
 - to validate COTS technology in Cold
 - develop Cold custom technology for this application

or

\Rightarrow Power budget and limitation for power dissipation in LAr

\Rightarrow Cost envelop for VD PD

[with baseline plan of substantial part of the "cathode" mounting scheme in DUNE-US Project]

⇒ Creation of a new PD community from US, EU and International, within the existing DUNE PD Consortium

Boundary conditions for VD PD on HV surface

The R&D path

2021 R&D Strategy

Team of experts launched on each component:

- -xARAPUCA Detector Prototype
- Power over Fiber Solutions
- Passive Ganging Stage
- -Active Ganging + Ampli Stage
- Analog Transmitter

- ADC
- FPGA
- Digital Transmitter (Tx)
- Control Receiver (Rx)
- Sync Distribution
- Short-term: component cold tests (on-going) and **CE board prototype integration (in progress) and tests**

 Targeting two prototypes for end-of-year **CERN Cold Box Tests**

• Leaving for FY22...

- CE Packaging optimization
- Power consumption optimization
- Long-term (30-year) cold studies
- xARAPUCA optimization for Xe light collection

LBNC April 28 2021: Vertical Drift Technical Review

22-Apr-2021

Power over Fiber (PoF)

Lasers Transmitter+ Fiber

High Voltage/vLow Current Light Receiver

+ Low Volt/High Current Receiver (CE)

+ High Volt/Low Current Receiver (SiPMs)

DUNE

- 320 ARAPUCAs
- Divided into sectors (4 6)
- 48 Volts +/- 80 mv
- 50 ma (DC) / Sector (assuming 5ua/SiPM)
- Some storage capacitance at housing units

Tested power (FNAL/CERN) Certified 48 v Verified power vs load

Power over Fiber System

- Certified short-term stability
- Need to verify long term viability
- <u>Test DC-DC converter to handle load variations</u>

4pi Reference Design

Power Budget Estimates: Analog CE+Transmission: < 200 W Dissipated Power in LAr: Analog < 0.6 kW

Digital CE+Transmission: ~ 800 W

Electronics Box (x 80)

- 4 Transmitters
- 200mW bias(10ma@5V*4)
- TxPower 1.6W(80ma@5V)*4
- 4 OpAmp Active Ganging
- 5V@10ma*4=.2W

Power over Fiber System

Input Fiber

SiPM	Analog on t	the 300 KV cathode plane				
Detector	Contains 32	320/4 SiPM houses = 80				
House 2	Each house	a gets two 5-volt power lines				
SiPM	Ground line	he is common to row or column				
Detector	Fiber feedth	throughs – similar cork style units				
House 42	Fiber neede	ded per house – 2 or 4 (testing – efficiency)				
ARAPUCA	As on the 300	O KV cathode plane				
Contains	320 SiPM ho	uses divided into sets				
Sets of ho	buses connec	ted to the same PoF				
Perhaps -	two rows pe	er PoF system (80 blocks)				
Fiber feed	dthrough – tw	vo 12-hole units				
Arapucas	are grouped	into sets of 4 as base design				
Each grou	ip of 4 share	an electronics box				

xARAPUCA Tile (new generation)

(new) Flex Kapton PCB(20 SiPM - Hybrid Passive Ganging)

 160 SiPMs (40 per side)
 Glued to WLS Bar for improved performance

- SiPMs mounted on Kapton flexi-PCB
 - Addresses relative thermal contraction of WLS plate/frame.
- Power-to-Glass FB-118WLS plate (Milano)

(new) HQE WLS plate (60x60 cm²)

The manufacture warded warded warde

(new) SiPM-WLS plate optical Contact

A DATE ALL DATE A

Passive and Active Ganging - SiPM CE Stage 1- Stage 2

(20 SiPM) - Hybrid Passive Ganging Stage Flex Kapton PCB

Active ganging + Ampli Stage Analog CE PCB

Twisted cable 1 Twisted cable 2 Twisted cable 3 Twisted cable 4 ∬÷∅≓∅∞∞∞≈+∞∞∞∞ 🮆 Noname - TR result184 <u>File Edit View Process Help</u> <mark>0.00</mark> — 129.94 —

0.00

COTS OpAMP selected and Validated in Cold (different options available)

⊗ ⇒ Analog Optical Transmitter

- Previous investigations show encouraging results
- The DarkSide experiment already has developed a well-functioning single channel prototype
- Ο
- Collaboration with DS (on analog Transmission R&D) is providing valuable inputs for our design Ο

Laser driver:

test board

- in-house design, functioning at cryo-temperatures Ο (LN2) - bandwidths of ~50 MHz in cold
- evaluation of components in test-board with a simple Ο driver circuit \rightarrow promising components identified
- non-linear adaptation to reach larger dynamic range to Ο be developed

it does not meet DS's radiopurity requirement yet but performance in cold matches technical requirements

DUNE

Analog Optical Receiver and Digitization

- First tests done with an off-the-shelf Femto receiver
 - now developing an in-house receiver with an InGas pin-diode and Ο fast amplification
 - using off-the shelf Femto for coldbox test is an option Ο
 - \rightarrow 200 MHz and ~20mVpp noise level

Previous development for Dual Phase

- Digitization at warm could be done using either DAPHNE or the PDS readout developed for DualPhase:
 - \rightarrow µTCA standard
 - commercial motherboard with a StratixIV FPGA
 - ⇒custom daughter board:
 - \rightarrow 14 bit ADC chosen (AD LTC2155-14)

IBMON Current vs BSET

Test Stand At PAB

CE+Transmission Integration: Stacking concept

LBNC April 28 2021: Vertical Drift Technical Review

22-Apr-2021

2021 R&D Strategy

Target **two** xARAPUCA prototype detector tiles for CERN cold box test:

Each 160 SiPMs 60x60cm²; one SiPM vendor for each

Target **two** prototype cold-electronics approaches:

- 1. "Cold analog" approach
 - 160 SiPMs passive-ganging => 1 active-ganged analog waveforms
- 2. "Cold digital" approach
 - 80 SiPMs passive-ganging => 2 active-ganged digitized waveforms
 - 14-bits @ 80Msps

Also considering a 3rd prototype "Insulated digital" approach

- 80 SiPMs passive-ganging => 2 active-ganged digitized waveforms
- 280K thermostat. 14-bits @ 80Msps

2021 R&D Milestone Timeline

Activity			FY21 FY22						22					
Subsystem or Task	Activity	Notes	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan
Project Management														
===>	Minor Milestone:	Select Control Rx Phase 1 candidate(s). Target 1 candidate.			Х									
===>	Minor Milestone:	Select Control Rx Phase 2 candidate(s). Target 1 candidate.				Х								
===>	Minor Milestone:	Select Control Rx Phase 3 candidate(s). Target 1 candidate.					Х							
===>	Milestone:	Select Control Rx Prototype final candidate.					Х							
===>	Minor Milestone:	Select Sync Distribution Phase 1 candidate(s). Target 1 candidate.				Х								
===>	Minor Milestone:	Select Sync Distribution Phase 2 candidate(s). Target 1 candidate.					Х							
===>	Minor Milestone:	Select Sync Distribution Phase 3 candidate(s). Target 1 candidate.						Х						
===>	Milestone:	Select Sync Distribution Prototype final candidate.						Х						
===>	Minor Milestone:	Select Analog/Digital Waveform Optical Tx Phase 1 candidate(s). Target 1 candidate.		Х										
===>	Minor Milestone:	Select Analog/Digital Waveform Optical Tx Phase 2 candidate(s). Target 1 candidate.			Х									
===>	Minor Milestone:	Select Analog/Digital Waveform Optical Tx Phase 3 candidate(s). Target 1 candidate.				Х								
===>	Minor Milestone:	Select SERDES Phase 1 candidate(s). Target 1 candidate.		Х										
===>	Minor Milestone:	Select SERDES Phase 2 candidate(s). Target 1 candidate.			Х									
===>	Minor Milestone:	Select SERDES Phase 3 candidate(s). Target 1 candidate.				Х								
===>	Minor Milestone:	Select ADC Phase 1 candidate(s). Target 1 candidate.		Х										
===>	Minor Milestone:	Select ADC Phase 2 candidate(s). Target 1 candidate.			Х									
===>	Minor Milestone:	Select ADC Phase 3 candidate(s). Target 1 candidate.				X								
===>	Major Milestone:	Pair-wise integration of most promising phase 1 candidate components and Power-over-fiber.				Х								
===>	Milestone:	Analog Front-end integration Prototype in cold validated.					Х							
===>	Milestone:	SERDES Tx integration Prototype in cold validated.					Х							
===>	Milestone:	SERDES Rx integration Prototype in cold validated.					Х							
===>	Major Milestone:	Downselect ADC/SERDES/digital Tx or analog Tx Prototype final candidate.					X							
===>	Major Milestone:	ADC+SERDES+Optical Rx/Tx integration Prototype OR Analog Optical Tx integration Prototype in cold validated.						X						
===>	Milestone:	1-channel waveform readout integration Prototype in cold validated.						Х						
===>	Major Milestone:	Full modules waveform readout integration Prototype in cold validated.							Х					
===>	Major Milestone:	Two synchronized integration Prototype modules in cold validated.							X					
===>	Milestone:	Two synchronized integration Prototype modules in cold <10KV plane validated. Or documented as not needed.							Х					
===>	Major Milestone:	Two Prototype v1 modules installed at CERN Cold Box Test Part-A.								Х				
===>	Major Milestone:	Two Prototype v2 modules installed at CERN Cold Box Test Part-B.										X		
===>	Major Milestone:	Synchronized waveform readout of two Prototype modes in CERN Cold Box Test.										X		

FD-2 PDS for LBNC -- Ryan A. Rivera

R&D Group: Cold Electronics and Transmission, **Prototype Detector, Prototype Performance** Simulation&Requirements Study

- Participating Institutions: FNAL-AD, -PPD, -SCD (EE Dep.t's) and -ND, CS UCSB, APC-Paris, SMU, U. Mi-Bicocca, INFN-Mi, BNL, UNICAMP, UFSC, UFABC, UTFPR, UNIFAL CERN
- Expressing interest to join: ANL, Syracuse U., U of Iowa, CIEMAT, IFIC-Valencia, U. Of Indiana, U. of Illinois-UC, INFN-Napoli, Edinburgh, RAL, FZU-Prague,

R&D Activity: 2 weekly Meetings with Technical Information Repository

	India	Public • 🕚 US/Central •
	Home Create event + Room booking My profile	
	Home » Experiments » DUNE » Far Detector » Vertical Drift - 4pi - PhDet System » VD PhDet PoF&CE	
	VD PhDet PoF&CE Create event	Parent category
	Meetings and Material about R&D on VD PhDet: -> >oF Meetings and Material about R&D on VD PhDet: -> >oF and Cold Electronics	 Alan Prosser Dante Totani David Christian Flavio Cavanna Gustavo Cancelo Jaime Dawson Ryan Rivera Sabrina Sacerdoti William Pellico
	April 2021 Image: State of the	 Materials LBNC-Mar2021-Question PD-Contribution-LBNC-F VD-PDS-4pi-RandD-CE, VD-PDS-4pi-RandD-Jan2
U,	March 2021 31 Mar VD PD CE Mtg 25 Mar DUNE VD PD - DarkSide Joint Mtg. 24 Mar VD PD CE Mtg 18 Mar DUNE VD PD - DarkSide Joint Mtg.	 AAA Literature of Interest 1610 - Bakhshi_jpl.pd cold_electronics_jpl.pd (Cold) Active Ganging and Analog-CE-HD-Gotti_ (Cold) ADC and FPGA - I Liu_2019_JInst14_ LTC2145-14 Datashee
7	 17 Mar VD PD CE Mtg 10 Mar DUNE VD PD - DarkSide Joint Mtg. 03 Mar VD PD CE Mtg February 2021 	 LTC2145-14 Datashee OptoLink - Documentation OptoLink-forColdTest. The Structure and Print PoF-Documentation Fiber Communication.
	 24 Feb DUNE VD PD - DarkSide Joint Mtg. 17 Feb VD PD CE Mtg 10 Feb DUNE VD PD - DarkSide Joint Mtg. 03 Feb VD PD CE Mtg. January 2021 	 How the MHGP's PPC IMG_0104.JPG IMG_0105.JPG IMG_0106.JPG ISL_laser_form_PoF_sate Item tested in liquid ni MH GoPower.pdf MH-GoPower-YCH-L2 PoE-Abstract pdf
	O4 Jan VD PD PoF Mtg (Summary) December 2020	 POF_detector_talk-Sn POF_in-few-words.pd YCH-H6424_15V_PP(YHC-L240-6v-photow
	 30 Dec VD PD PoF Mtg 23 Dec VD PD PoF Mtg 16 Dec VD PD PoF Mtg 09 Dec VD PD PoF Mtg 02 Dec VD PD PoF Mtg 	SiPM & Passive Ganging HybridGanging-ieki_x
	November 2020 25 Nov VD PD PoF Mtg 18 Nov VD PD PoF Mtg	

LBNC April 28 2021: Vertical Drift Technical Review

22-Apr-2021

💌 💄 E Cavanna x
0
P=
stions_for_VD_Brea
IC-Plenary.pdf
CE.pdf
an25-2021-DUNE
areat
erest
i.pat
pl.pdf
g and Ampli/Shap
otti_2020_JInst1
A - Documentation
14_T07005.pdf
sheet and Product I
sheet and Product I
tation
Test pag
Bringials of the On
Principle of the Op
tion.pdf
PPC Works.pdf
F_setup.doc
d nitrogen.png
0
4-1 240 6V PPC D
- ×
-Snowmass.pdf
s.pdf
PPC_Datasheet_R
tovoltaic-power-co
ging - Documenta
ki_xesat2017-1.pdf

- prototype#2 for ColdBox in the plan

Boundary Conditions are met

Achievements from R&D in Progress

 \Rightarrow PoF for SiPM demonstrated (optimization in progress), PoF for CE in progress (easier for Analog CE option) ⇒ xARAPUCA tile (new design) ⊕ ANALOG CE/Transmission: prototype#1 seems achievable in time for ColdBox test (Fall 2021) \Rightarrow Digital CE/Transmission (prototype#2) - validation in Cold in progress (fast development w/ very encouraging results):

⇒ PoF for PD CE and SiPMs: estimated Power budget is within limits for power dissipation in LAr

⇒ Cost envelop for VD PD for both Reference and Backup solutions within current limits for the US project. Resources from International expected (under negotiations w/ funding agencies)

 \Rightarrow VD PD core-group from US, EU and International created and included within the existing DUNE PD Consortium. Existing Groups are growing with new highly qualified resources, and new Groups are showing interest to join

DUNE

The R&D path and achievements so far

New generation xARAPUCA technology - Large Tile (60x60 cm²) - 160 SiPM (40 SiPM/side - all 4 sides) in single Channel (MegaCell): design fully developed [CSU: mockup in production], validated by dedicated MC study (efficiency-Brz Grp.s), optimized with new HQE WLS plates (Mi-Bicocca) + improved SiPM-WLS Optical contact (Flex Kapton PCB mounted

8 Groups of 20 SiPM in a (new) hybrid (4 Parallel x 5 Series) ganging [FNAL, UCSB], lower capacitance (compared w/ traditional passive ganging), signal fall time shorter, signal amplitude larger - at common Bias V for single SiPM, validated by SPICE simulation [Mi, FNAL], test board in production [FNAL-SCD, BNL], Flex PCB integrated on xARAPUCA frame.

Analog F/E - Cold OpAmp validated in cold [different options available] - goal: 8 groups of 20SiPM summed into one channel (OpAmp), test board in preparation with selectable n. of groups (up to 8). Additional Cold OpAmp options can be

COTS Laser Diode validated in Cold, in-house made AnalogDriver tested ok in Cold, Opt.Coupling under development (DS-style connector) [APC-Paris + support from DS, + support from FNAL] - Analog Transmission: full-chain Validation in Cold expected by May/June.

COTS ADC selection, tests and validation in Cold [different options available, 14 bits, 80 MSPS], test board OpAmp+ADC in preparation/in production, FPGAs selection and test in cold, compression algorithms, insulating techniques, transmission cold qualification (input from BNL,

> COTS Laser Diodes selection, tests and validation in Cold, modified COTS DigitalDriver 10 GBPS ADN2526 first test in Cold OK, Opt.Coupling & Fiber selection in progress [FNAL & SMU + support by Versatile Link Plus Collaboration @ CERN] - Digital Transmission: full-chain in progress, Validation in Cold expected by June/July.

BACKUP

LBNC April 28 2021: Vertical Drift Technical Review

DUNE

PD Reference design for the VD LAr Volume

	Detector Component/Feature	Parameter	Demonstration
	Scintillation medium composition	Ar+Xe(10 ppm)	protoDUNE
		(Ar Slow-component full transfer to Xe)	
	X-ARAPUCA Technology Choice		
Technical Requirements	SiPM + Electronics read-out	$S/N \ge 5$	$protoDUNE + prototype \ Tests$
	X-ARAPUCA efficiency	$\epsilon_D=3\%$	$protoDUNE + prototype \ Tests$
	PoF - Power Transmission	Conversion Effic. 22%	prototype Tests - FNAL
		Usable Pwr: 4 W/PoF-Unit	prototype Tests - FNAL, CERN
		stability, noise at $V_{out} \sim 50 V$	prototype tests - ongoing CERN
	PoF - Signal Transmission		prototype tests - planned
	PDS Light Yield	$\langle LY \rangle \simeq 60$	from MC study
		$LY_{min} \simeq 30$	from MC study
	Spatial resolution	$\sigma_r \le 0.7 \text{ m} (E_{dep} \ge 5 \text{ MeV})$	from MC study
Expected Performance	Energy resolution	$\sigma_E/E \le 10\% (E_{dep} \ge 5 \text{ MeV})$	from MC study
	Time resolution	≤ 200 ns (to be confirmed)	MC study - ongoing

Electronics Box

This configuration will require 320 ELEDS/Cables - Verses 640 if each channel has a analog transmitter Power for the op amps near the Arapuca may come from SiPM power units Power for op amps and transmitters in the electronic box will come from power voltage fanout

- Each Arapuca transmits two analog signals to the electronics box ٠
- A summing amp combines both analog signals ٠
- An analog transmitter, Tx (and conditioning electronics) transmits ٠
- A calibration circuit (receives an ext. trig and plays a ramp into Tx) ٠

Vertical drift single phase LArTPC:

the Photon Detector Project

Project High Level Activity Plan

Date Range	High Level Act
FY21	Prototype desig
October 2021	Project Concep
End-of-2021	Subsystem Pre
FY22-23	Long-term Cold
January 2023	Final Design Re
Summer 2023	Characterize 1/
End-of-2023	Production Rea
FY24-26	Production pha
FY27	Installation beg
FY28	Installation com
FY29	Commissioning

tivity

- gn R&D and prototype v1/v2
- otual Design Report (CD-1)
- eliminary Design Review (60% design)
- Studies and prototype v3/v4
- eview (90% design)
- /20th pilot "module 0" at ProtoDUNE2
- adiness Review
- ISe
- lins
- nplete
- detector

ProtoDUNE2 and Production Milestones

Baseline Date	Milestone
Summer 2023	T4 Milestone: 1/20 th scale ProtoDUNE
End-of-2023	T4 Milestone: Vertical Slice Test compl
October 2023	T4 Milestone: All Production Readines
January 2027	T4 Milestone: 50% of Production Tile
January 2028	T4 Milestone: 100% of Production Tile
Spring 2027	T4 Milestone: 50% of Production Tile
Spring 2028	T4 Milestone: 100% of Production Tile
Summer 2027	T4 Milestone: 50% of Production Tile
Spring 2028	T4 Milestone: 100% of Production Tile
Winter 2027	T4 Milestone: 50% of Production Tile
Summer 2028	T4 Milestone: 100% of Production Tile
Summer 2028	T4 Milestone: Cathode PDS commission
Summer 2028	T4 Milestone: Membrane PDS commis
Fall 2028	T4 Milestone: FD-2 PDS commissioned

2	pilot s	svstem	commis	ssioned	1.
_		,			

lete

ss Reviews complete

Assemblies constructed.

e Assemblies constructed.

Assemblies shipped to US Reception Facility.

e Assemblies shipped to US Reception Facility.

Assemblies installed.

e Assemblies installed.

Assemblies integrated.

e Assemblies integrated.

oned

ssioned

METTERE IN BAC

ject	WBS
J	

K-	U	P ?

xARAPUCA detector Simulation and efficiency study

 $\delta = 0.6 \frac{SiPM}{cm}$, 36 SiPM/side. 36 Filters with 144 SiPMs. 18 Filters with 3000 2000 1000 0 Efficiency: 36,51% 1000 -2000 -3000 6000 5000 4000 ¹⁰⁰⁰2000 3000 4000 5000 6000 ىز 3000 2000 30 1000 0

Dichroic Filters 10cm × 10cm 60cm x 60cm x 0.4cm thick light-guide SiPMs around Perimeter

108 SiPMs. $\delta = 0.6 \frac{SiPM}{cm}$, 36 SiPM/L-side, 18 SiPM/S-side.

Simulations

Preview of main goals and current implementations

Position reconstruction from barycenter

Position taking from analysing the pe seen by each line/row of PDs on the three planes and the point from where we shot the photons. What is shown is the pe map on each plane and the integrated values over x, y and z. Assuming 3% PD efficiency.

LBNC April 28 2021: Vertical Drift Technical Review

Simulated Photon Detected

Energy Reconstruction and Resolution

PD Energy Response

Requirements:

- Additional timing resolution requirement based on vertexing?
- Digitizer requirements (dynamic range, sampling freq., bandwidth)

Detector parameters open to optimization:

- Detection of Ar (only), Ar+Xe, Xe-only Light
- 1-sided vs. 3- sided vs 5-sided
- w/ or w/o reflections from the Anode
- Transparent Cathode vs Opaque or Reflective Cathode

Simulation Development (LArSoft): **PARTIALLY DONE**

- VD geometry --> DONE
- Fast simulation --> ON THE WAY
- Xe timing parameterization --> DONE (adjustable parameters, including N2 in progress)

Plan for this year

- LArSoft simulation available
- PD Trigger (and prompt Bckgd Rejection) Strategy combined with existing TPC Trigger Strategies
- Goals for SNe and p-decay detection w/ PD:
 - minimum (t0)
 - enhanced physics (supernova neutrino background, NS cooling, ...)
- Backgrounds

- Other Low En UG Physics (eg Solar neutrinos)

- Comparison w/ Horiz. Drift (Light Yield, E resolution for HD and direct comparison for VD-Reference option and fall-back option)

