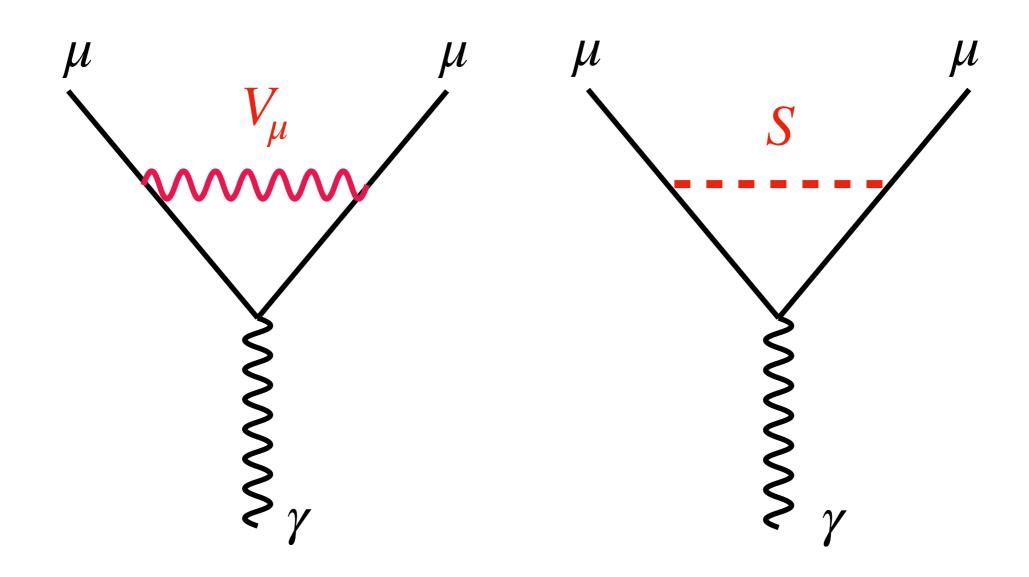
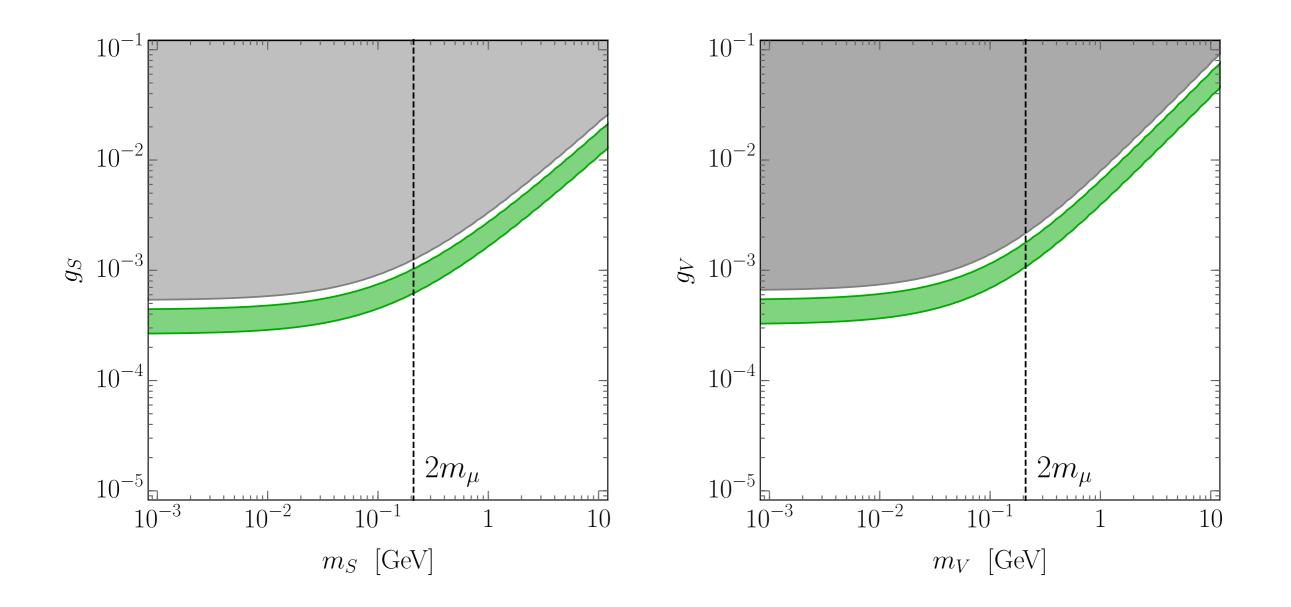

Muon Beam Fixed Target Phenomenology for $(g - 2)_{\mu}$

Brian Batell University of Pittsburgh

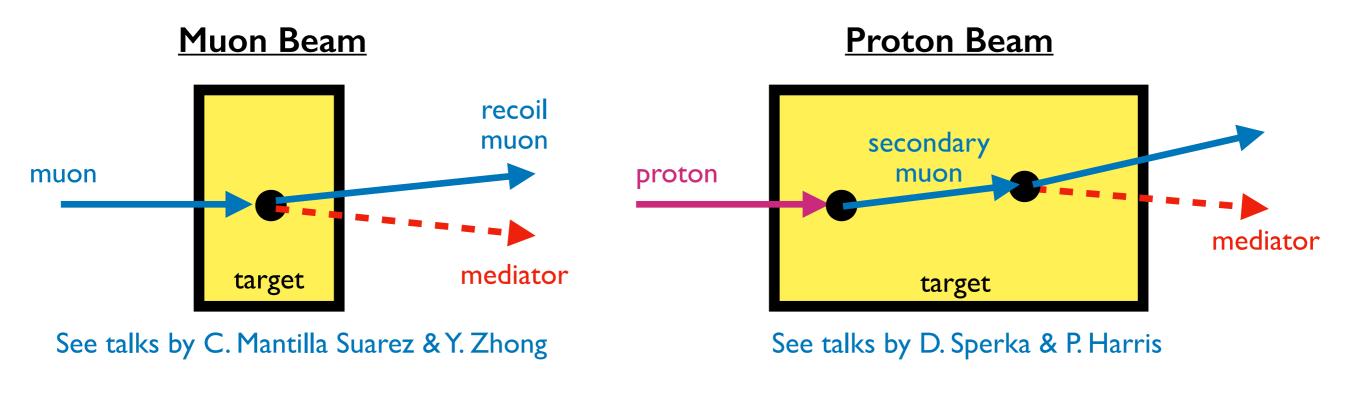


Discovering the new physics of $(g - 2)_{\mu}$ with fixed target muon facilities at Fermilab June 22, 2021

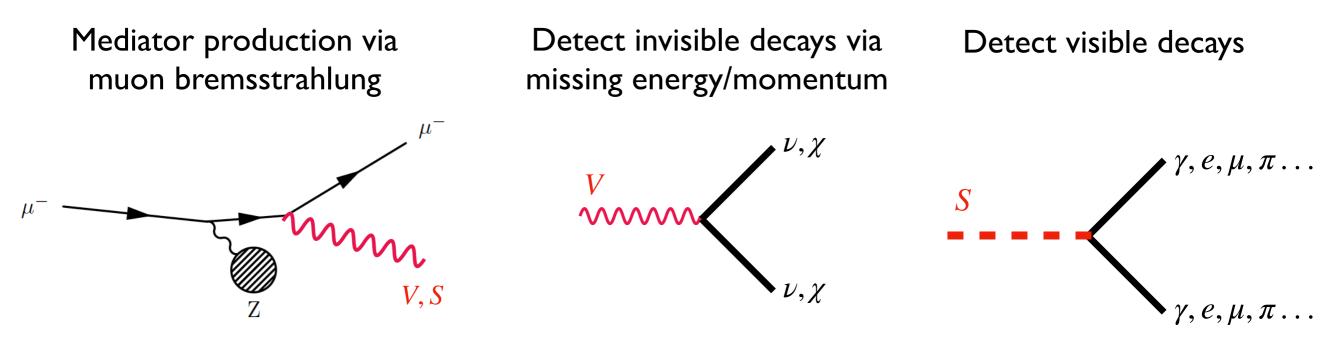
Fermilab Muon g - 2 results



Muon-philic force and $(g - 2)_{\mu}$


Muon beam fixed target experiments can directly search for the mediator!

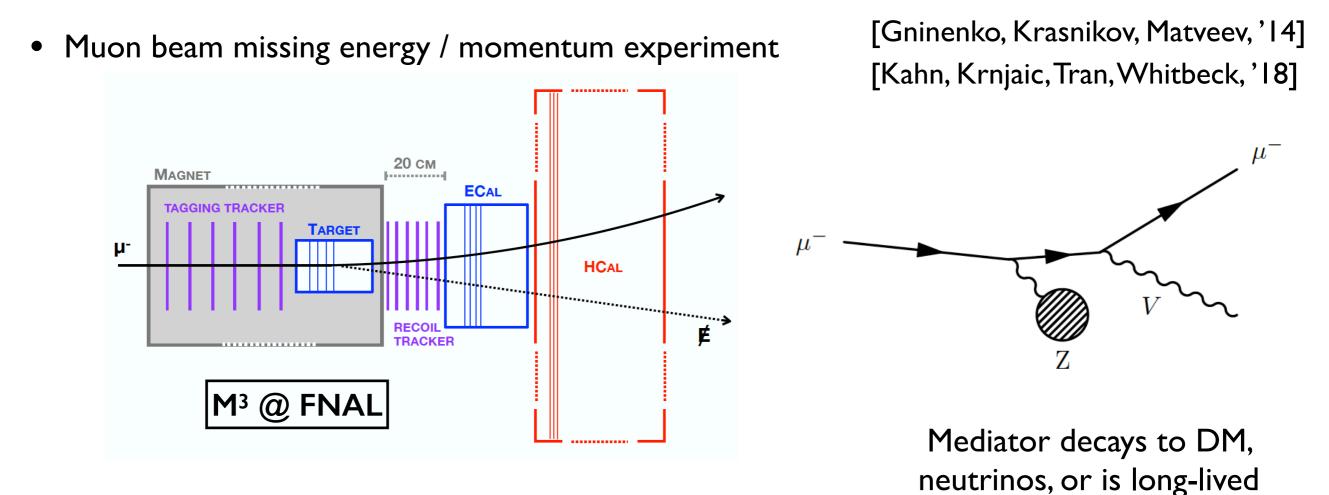
Mediator parameter space and $(g - 2)_{\mu}$



Substantial mediator coupling needed to explain $(g - 2)_{\mu}$ Large production rates in muon beam experiments!

Mediator production and detection in muon and proton fixed target experiments

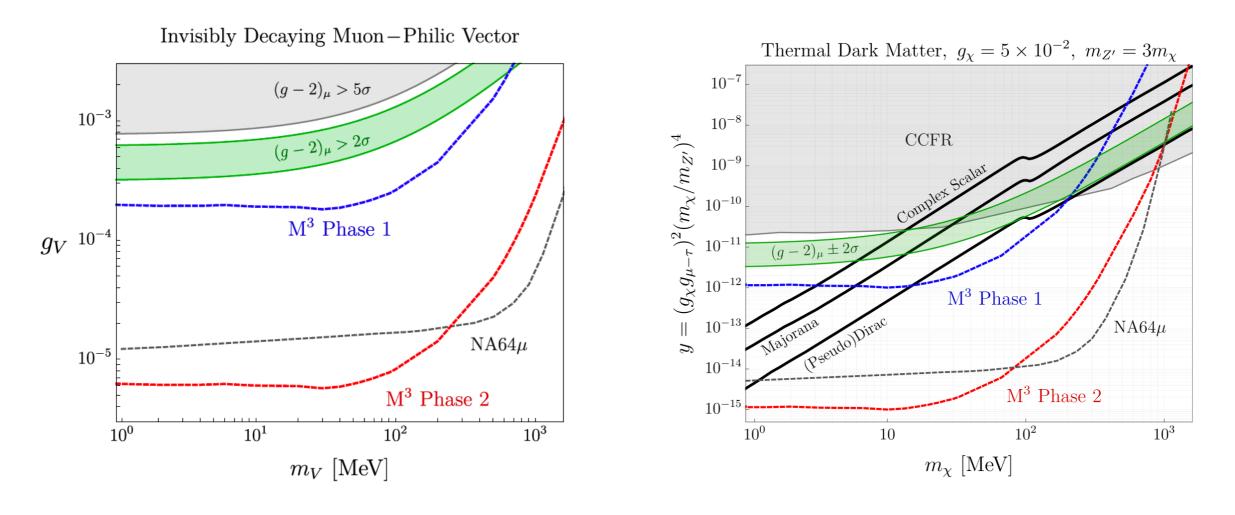
Mediator Production and Detection


Minimal signatures/mediators/models

	Invisible			Visible					
final state/ mediator	Long- lived	neutrinos $ u u$	DM XX	photons $\gamma\gamma$	electrons e^+e^-	muons $\mu^+\mu^-$	hadrons $\pi\pi,\ldots$		
	no(?)	yes	yes	no	no(?)	$yes^* (m_V > 2m_\mu)$	no(?)		
vector	couple to • Challengi	$L_{\mu} - L_{\tau}$ gauge boson: UV complete, automatic coupling to neutrinos, easy to couple to DM. (* $m_V > 2m_{\mu}$ constrained by dedicated BABAR search) Challenging to build viable models with sizable couplings of vector mediator to electrons or hadrons (gauge anomalies, constraints from neutrino physics)							
	$yes (m_S < 2m_\mu)$	yes	yes	$yes (m_S < 2m_\mu)$	$yes (m_S < 2m_\mu)$	$yes (m_S > 2m_\mu)$	$yes (m_S > 2m_{\pi})$		
scalar	 All minimal signatures can be realized in scalar simplified models. UV complete models require new SM-charged states above weak scale with special flavor structure (such states can in principle affect (g-2) More phenomenological studies needed to chart the parameter space 								
signature	missing momentum prompt or displaced resonance						nce		

Invisible mediator

	Invisible			Visible					
final state/ mediator	Long- lived	neutrinos $\nu\nu$	DM XX	photons $\gamma\gamma$	electrons e^+e^-	muons $\mu^+\mu^-$	hadrons $\pi\pi,\ldots$		
	no(?)	yes	yes	no	no(?)	$yes^* (m_V > 2m_\mu)$	no(?)		
vector	 L_μ - L_τ gauge boson: UV complete, automatic coupling to neutrinos, easy to couple to DM. (* m_V > 2m_μ constrained by dedicated BABAR search) Challenging to build viable models with sizable couplings of vector mediator to electrons or hadrons (gauge anomalies, constraints from neutrino physics) 								
	$yes (m_S < 2m_\mu)$	yes	yes	$yes (m_S < 2m_\mu)$	$yes (m_S < 2m_\mu)$	$yes (m_S > 2m_{\mu})$	$yes (m_S > 2m_{\pi})$		
scalar	 All minimal signatures can be realized in scalar simplified models. UV complete models require new SM-charged states above weak scale with special flavor structure (such states can in principle affect (g-2) More phenomenological studies needed to chart the parameter space 								
signature	missing momentum prompt or displaced resonance						nce		


Invisible mediator

- Muon beam impinges on a thick target
- Mediator inherits significant fraction of beam energy
- Signal is a recoil muon with momentum measured by recoil tracker
- ECAL and HCAL used to veto backgrounds
- Experiment can be done with muon beams at FNAL!

See talk by C. Mantilla Suarez

- M³ Phase I with ~ 10¹⁰ muons on target can cover most of the light mediator parameter space that explains $(g 2)_u$
- M³ Phase 2 with ~ 10¹³ MOT can also test well-motivated models of muon-philic thermal dark matter

See talk by C. Suarez

Scalar mediator decay to photons

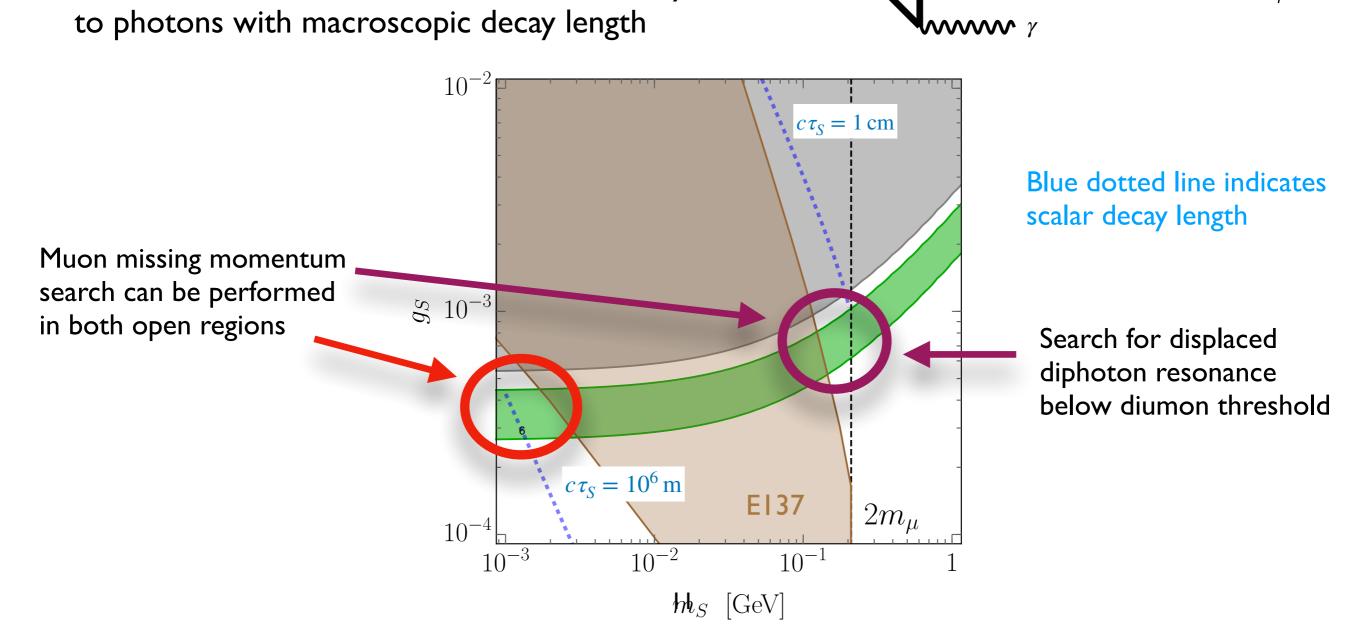
		Invisible		Visible					
final state/ mediator	Long- lived	neutrinos $\nu\nu$	DM XX	photons $\gamma\gamma$	electrons e^+e^-	muons $\mu^+\mu^-$	hadrons $\pi\pi,\ldots$		
	no(?)	yes	yes	no	no(?)	$yes^* (m_V > 2m_\mu)$	no(?)		
vector	 L_μ - L_τ gauge boson: UV complete, automatic coupling to neutrinos, easy to couple to DM. (* m_V > 2m_μ constrained by dedicated BABAR search) Challenging to build viable models with sizable couplings of vector mediator to electrons or hadrons (gauge anomalies, constraints from neutrino physics) 								
	$yes (m_S < 2m_\mu)$	yes	yes	$yes (m_S < 2m_\mu)$	$yes (m_S < 2m_\mu)$	$yes (m_S > 2m_{\mu})$	$yes (m_S > 2m_{\pi})$		
scalar	 All minimal signatures can be realized in scalar simplified models. UV complete models require new SM-charged states above weak scale with special flavor structure (such states can in principle affect (g-2) More phenomenological studies needed to chart the parameter space 								
signature	missi	ng moment	um	displaced resonance					

Muon-philic scalar

Below the dimuon threshold, the scalar decays

 $\mathcal{L} = -g_S \, S \,\overline{\mu}\mu - \frac{1}{4\Lambda} S F_{\mu\nu} F^{\mu\nu}$

Model


lacksquare

[Chen, Davoudiasl, Marciano, Zhang, '15][Chen, Pospelov, Zhong, '17][BB, Freitas, Ismail, McKeen, '17]

 $\frac{1}{4\Lambda} \sim \frac{g_S \,\alpha}{4\pi m_\mu}$

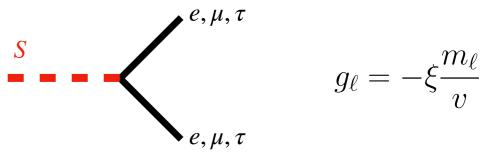
 Minimal scenario: photon coupling generated at one loop from the muon coupling:

 $\gamma \gamma$

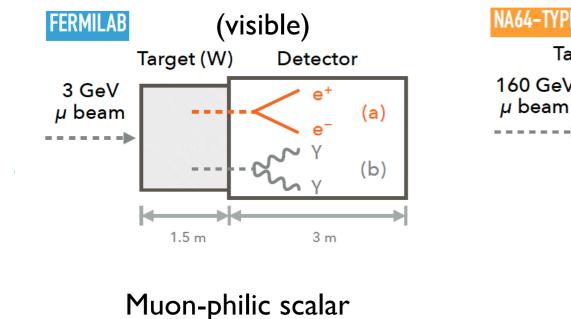
S

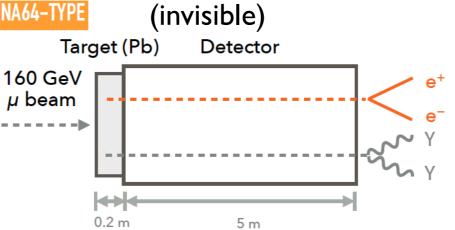
Scalar mediator decay to electrons

		Invisible		Visible					
final state/ mediator	Long- lived	neutrinos $\nu\nu$	DM XX	photons $\gamma\gamma$	electrons e^+e^-	muons $\mu^+\mu^-$	hadrons $\pi\pi,\ldots$		
	no(?)	yes	yes	no	no(?)	$yes^* (m_V > 2m_\mu)$	no(?)		
vector	 L_μ - L_τ gauge boson: UV complete, automatic coupling to neutrinos, easy to couple to DM. (* m_V > 2m_μ constrained by dedicated BABAR search) Challenging to build viable models with sizable couplings of vector mediator to electrons or hadrons (gauge anomalies, constraints from neutrino physics) 								
	$\frac{\text{yes}}{(m_S < 2m_\mu)}$	yes	yes	$yes (m_S < 2m_\mu)$	$yes (m_S < 2m_\mu)$	$yes (m_S > 2m_\mu)$	$yes (m_S > 2m_{\pi})$		
scalar	 All minimal signatures can be realized in scalar simplified models. UV complete models require new SM-charged states above weak scale with special flavor structure (such states can in principle affect (g-2) More phenomenological studies needed to chart the parameter space 								
signature	missi	ng moment	um	displaced resonance					

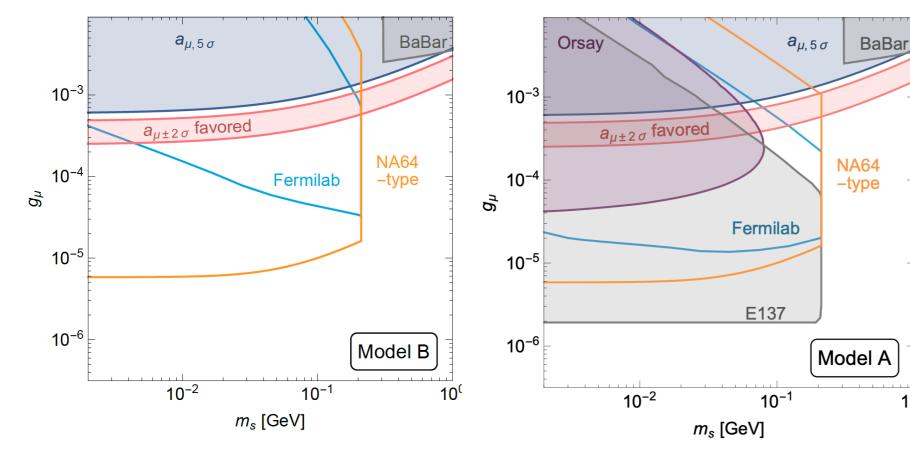

Lepto-philic scalar

• Model


$$\mathcal{L} = -\xi \sum_{\ell=e,\mu,\tau} \frac{m_{\ell}}{v} S \overline{\ell} \ell$$

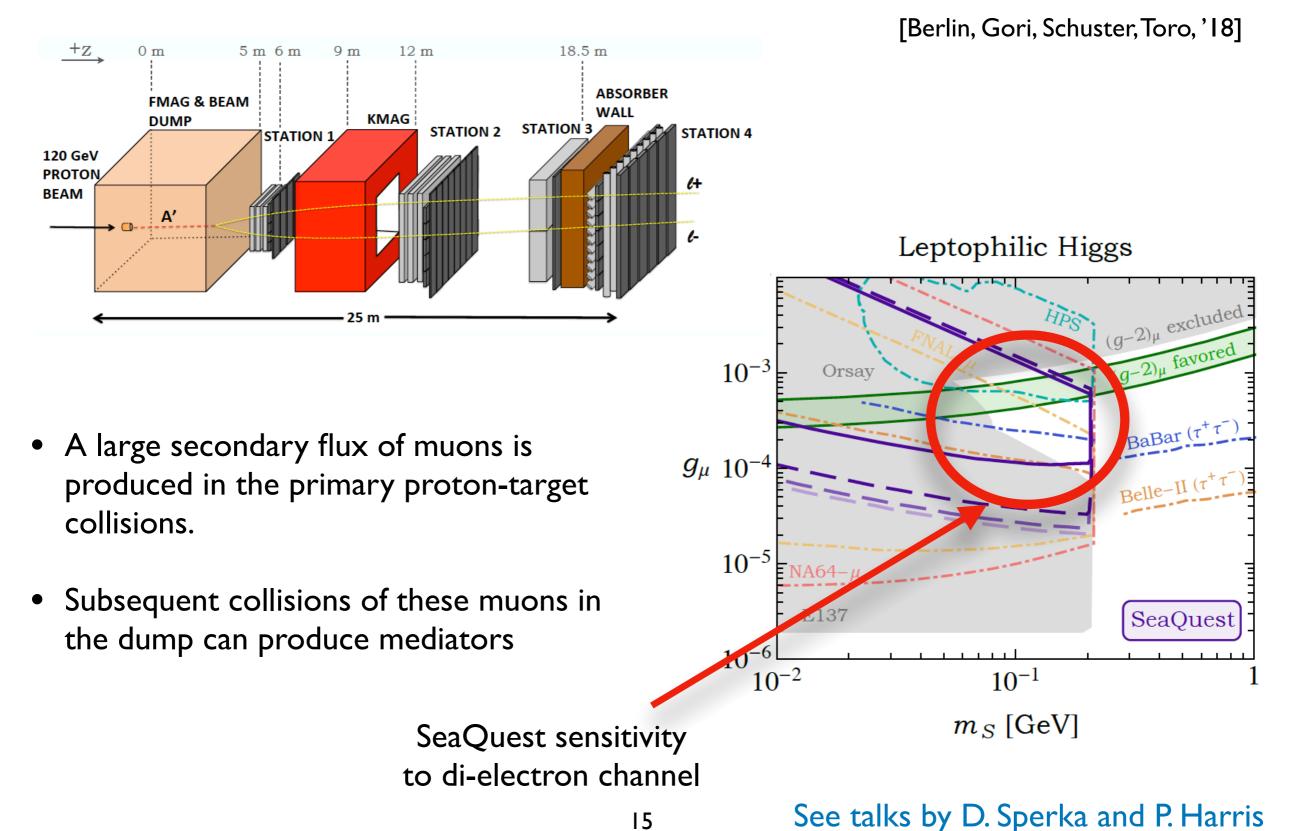

- This scenario is essentially ruled out for (sub-)GeV mass mediators (small region still allowed)
- 10^{2} **BABAR** Collaboration. \mathfrak{m} BABAR Z PRL 125, 181801 (2020) 10 (g-2) excl. (g-2) 1) Orsay BABAR search, $e^+e^- \rightarrow \tau^+\tau^- S, S \rightarrow \ell^+\ell^-$ Electron beam dumps (relies on coupling to τ) E137 (rely on electron coupling) 10⁻² BABAR ϕ_L 90% CL **10⁻³** 10⁻² **10**⁻¹ $2m_{\mu}$ m_{ϕ} (GeV)
 - If the scalar coupling to τ is suppressed, the BABAR constraint will not apply
 - 13

 Scalar inherits leptonic couplings from Higgs, couples in proportion to lepton mass


 Muon fixed target experiments can probe unexplored regions in both muon-philic and leptophilic scalar models
 [Chen, Pospelov, Zhong, '17]

Note, "NA64-type" can also be done at FNAL (i.e., M³)

Lepto-philic scalar



Right below dimuon threshold, both visible and invisible signals can be seen; important handle for model discrimination

See talk by Y. Zhong

10⁰

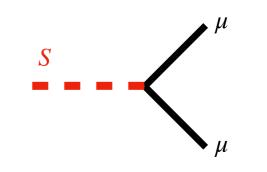
 Proton beam dump experiments, such as SeaQuest/SpinQuest/ DarkQuest/LongQuest, can also probe leptophilic mediators

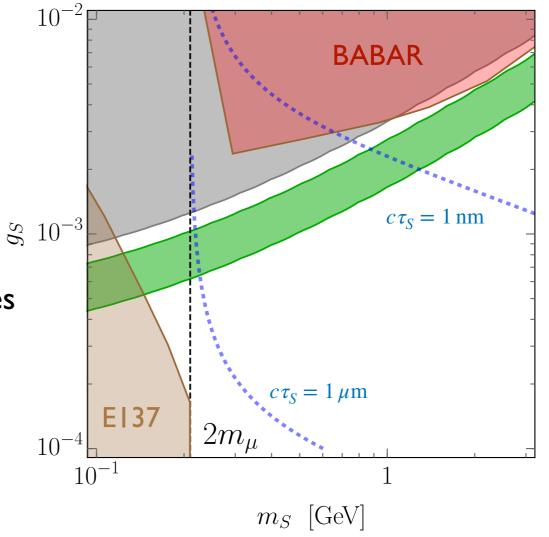
15

Scalar mediator decay to muons

		Invisible		Visible					
final state/ mediator	Long- lived	neutrinos $\nu\nu$	DM XX	photons $\gamma\gamma$	electrons e^+e^-	muons $\mu^+\mu^-$	hadrons $\pi\pi, \ldots$		
	no(?)	yes	yes	no	no(?)	$yes^* (m_V > 2m_\mu)$	no(?)		
vector	 L_μ - L_τ gauge boson: UV complete, automatic coupling to neutrinos, easy to couple to DM. (* m_V > 2m_μ constrained by dedicated BABAR search) Challenging to build viable models with sizable couplings of vector mediator to electrons or hadrons (gauge anomalies, constraints from neutrino physics) 								
	$yes (m_S < 2m_\mu)$	yes	yes	$yes (m_S < 2m_\mu)$	$yes (m_S < 2m_\mu)$	$yes (m_S > 2m_\mu)$	$yes (m_S > 2m_{\pi})$		
scalar	 scalar All minimal signatures can be realized in scalar simplified models. UV complete models require new SM-charged states above weak scale with special flavor structure (such states can in principle affect (g-2)) More phenomenological studies needed to chart the parameter space 								
signature	missi	ng moment	um	prompt resonance					

Muon-philic scalar


Model


$$\mathcal{L} = -g_S \, S \, \overline{\mu} \mu$$

- Above the dimuon threshold, the scalar decays promptly to muons
- At muon beam fixed target experiments, strategy would be a dimuon resonance search
- No studies in the literature yet feasibility study needed!

- It would also be worth considering opportunities at proton beam dump experiments
- Similar comments apply to scalars decaying hadronically. If such decays are to compete with the dimuon channel, they must be prompt.

• Production and decay of scalar mediator tied to same coupling relevant for $(g - 2)_{\mu}$

[[]Forbes, Herwig, Kahn, Krnjaic, Mantilla Suarez, Tran, Whitbeck, to appear]

Beyond the minimal models and signatures

Broader simplified model studies

- In the simplified scalar models, there is a broader parameter space than has been studied thus far.
- One can vary the coupling of the scalar to neutrinos, electrons, photons, quarks, and DM freely.
- Existing constraints and prospects at muon fixed target experiments depend in detail on such couplings.
- More phenomenological studies along these lines would be valuable.

[Forbes, Herwig, Kahn, Krnjaic, Mantilla Suarez, Tran, Whitbeck, to appear]

Complex final states

- Beyond the minimal visible decay channels discussed in this talk, one can envision more complex cascade decays with multiple visible particles plus missing invisible particles.
- Complex final states can often appear in models connecting to other outstanding problems (e.g., dark matter, neutrino masses, ...) — important to explore these connections!
- In most cases it makes sense for experimental studies to prioritize the simple minimal final states and signatures.

Outlook

- Muon and proton beam fixed target experiments at Fermilab can provide powerful near-term probes of muon-philic forces explaining $(g-2)_{\mu}$
- A range of experimental signatures are needed to cover the simplest models:
 - Missing momentum, displaced resonance, ...
 - Some conceptual studies still needed (e.g., prompt dimuon resonance searches)
- More phenomenological studies of simplified model parameter space are warranted, and it is worth further exploring theoretical connections between $(g-2)_{\mu}$ and other outstanding puzzles.
- Minimal models and signatures provide a good first target. These can be broadly probed with experiments at Fermilab!