
2D Shower Growing 
and Vertex Finding

Andy Chappell

10/05/2021 FD Sim/Reco Meeting



2

Previous update

• Check bounds hit 
intersection

• From this seed… • We get this

original cluster

contained hits

uncontained hits

• Given a large enough seed 
cluster, single view clusters 
can be grown quite effectively

• Unfortunately, seed clusters 
are rarely large enough

• Need to allow smaller seed 
clusters, but PCA becomes less 
reliable

• Need information from other 
views…



3

Adding multi-view information

• Example above shows U (left) and W (middle) views used to project 
PCA axis into the V (right) view

• Aim to alleviate the need for large clusters to form PCA seeds

• Cones built around these axes much like the previous version, but 
require coherent match across views to merge clusters within each 
view



4

Post 2D shower clustering example

• Provisional clustering looks acceptable
• Ideally three main showers, but given the overlap the result is understandable

• This algorithm does now act in other events
• Optimisation work is ongoing

• Running grid jobs to assess cluster purity and completeness

U V W

MC MC MCReco Reco Reco



5

Deep-learned vertexing

• Previous efforts to extract the primary (and secondary) vertices via semantic 
segmentation have been unsuccessful
• Likely source of failure is that attempting to tag the vertex leaves the network with very little 

truth information to work with

• Rethinking how the vertex information is encoded in the truth might overcome this 
problem, so I’ve been slowly chipping away at this as a side-project
• It’s not done yet, but I figured there was enough here to provide an update



6

Encoding truth information

• The distance from each hit to the primary vertex is calculated and assigned to one 
of 19 classes (the 20th class encodes the null hit)
• Each class represents a small bin describing a lower and upper distance bound

• Training images therefore look like this:

• The distance is a fractional distance 
relative to the image diagonal in pixels to 
ensure classes are invariant to the event 
scale

• This gives the network much more to 
work with

• Note: I’ve also modified the colour
palette for clarity here, future images will 
look subtlety different, but convey the 
same underlying information



7

Network training

• This truth encoding leads to stable training across all three views, as seen in the loss 
function evolution below left

• Good correspondence between truth and network classification in the validation 
set, with a representative example below right

Truth Network Classification



8

Using the output

• The network doesn’t return a vertex location in any 
view

• Need to process the output to determine the likely 
vertex location

• This is done via consensus

• For each hit, the network classification is converted 
to the known lower and upper distance bounds 
and a weighted (inversely proportional to ring area) 
ring is drawn

• From a single ring, the vertex can be anywhere 
within the shaded region



9

Using the output

• As we incorporate information from more hits, the overlapping rings isolate 
the likely vertex location

• This also makes the approach quite robust, errors in some hits get drowned 
out by the consensus



10

Using the output

• Eventually we get here =>

• With many hits, an efficient ring drawing 
algorithm is essential

• Bresenham midpoint circle algorithm is a 
long-standing, efficient circle drawing 
algorithm using only integer arithmetic
• Computes filled pixel locations for one octant, then 

mirrors to the remaining seven octants

• We need rings, not a one-pixel wide circle

• I modified the algorithm to fill between two 
Bresenham octants, ensuring each interior 
pixel is filled once, and only once, then 
mirrored

• All still integer arithmetic, so remains very fast



11

Running in Pandora

• One nice feature of this network is that it runs 
on a single image per view, unlike the 
track/shower network (which routinely runs 
on 10-20 tiles per view), so the network runs 
quite quickly
• < 2 sec/event for complete Pandora pat-rec chain

• Retain scope to run a second, higher 
resolution pass on the likely vertex region

• Event display on the left indicates the 2D 
vertex locations extracted in U (red), V (green) 
and W (blue) views

• Event display on the right indicates the 3D 
vertex projected into the U, V and W views 
(top to bottom)

Unfortunately, they don’t
all look like this yet



12

Running in Pandora

• There are still issues to resolve

• U view performs notably better than V and W, though not well overall
• I don’t fully understand this yet, but looks like a TorchScript conversion issue (next slide)

• In Python network classification looks good in all views

3D reco - true 2D reco - true



13

TorchScript v Python

• Selected a small set of events with poor vertex reconstruction in TorchScript
context and tested them with the underlying Python networks

• Each image here is from a different event

• The networks are clearly working effectively here, so need to understand why 
these results aren’t propagating to the TorchScript context

U V W



14

Next steps

• Try to understand why TorchScript networks aren’t reproducing the original 
Python performance

• Consider a second higher resolution pass to refine vertex position

• Return multiple candidates from the networks, not just the ‘best’

• Extend the method to secondary vertices


