Energy reconstruction technique for very high energy muons with DUNE-FD LArTPC.

Jaydip Singh

University of Lucknow, India Working With Dr. Thomas R. Junk FNAL, Batavia, USA Dr. Jyotsna Singh University of Lucknow, Lucknow, India.

May 10, 2021

FD Simulation and Reconstruction Bi-Weekly

Jaydip Singh

- Stopping muon events selection issue with MUSUN sample.
- $\bullet~{\rm dQ/dl}$ analysis with short/small (5 m) reco tracklength.
- Reconstructed muon momentum resolution plot with dQ/dl.
- Future work.
- It will be a follow-up talk from my previous presentation¹.

¹Jaydip, FD Simulation and Reconstruction Bi-Weekly : • Dec 14, 2020 Jaydip Singh FD Sim/Recon Bi-Weekly

True and reconstructed track length

- Here true tracks length are estimated by adding up the trajectory point distances inside the LArTPC.
- For removing the stopping muon events, we consider only those events that have no space points inside spheres of radius 5 cm, centered at estimated exit points.
- Exit points are estimated with respect to the active volume.

Stopping muons sample

- Left panel shows the track lengths by removing the stopping muons events from the sample.
- Right panel shows the candidate stopping muon tracks removed from whole sample.

Two sphere cut algorithm efficiency

- This presented efficiency plot estimated by taking the ratio of true tracks with cuts, ($abs(reco_{len} - true_{len}) < 10$) and passes by applying the 5 cm sphere cut on reconstructed tracks.
- This is the efficiency of your two-spheres cut as a function of the true track length.
- Still working on to improve the two sphere algorithem for seleting the stopping muons events that will be used for calibration².

²David, DUNE Calibration WG : • Feb 19, 2021 Jaydip Singh FD Sim/Recon Bi-Weekly

dQ/dl with non-stopping muons track segments.

• Left panel shows the charges(recob::Hit::Integral()) per unit length for full track length and right panel shows for short track segments (L = 5m).

Analysis with monoenergetic MC sample

- Mono energitic events are generated with the particle gun and muons are propagated along the horizontal direction.
- Angle are uniformly varies randomly from 1 to 11° ($\theta_{xz\&yz}=6\pm 5$).
- X and Y coordinates are also uniformly varied randomly from -500 to 500 cm while Z is kept fixed at 0.0.
- Presented reconstructed tracks length with 1 and 10 TeV (left and right panel) muons events are shown in the figure.

dQ/dl with 1 and 10 TeV muons track segments

• Top left and right panel shows the dQ/dl distribution with full track and short track (L = 5m)respectively for 1 TeV muons and the bottom panel shows for 10 TeV muons events.

Jaydip Singh

FD Sim/Recon Bi-Weekly

Confidence interval for dQ/dl

• Here left and right panel shows the dQ/dl distribution for 10 TeV muon events with confidence intervals (68.3%) for full track and short track (L = 5m) respectively.

Neyman plot for dQ/dl with muons track segments

- Here left and right panel shows the Neyman plot for dQ/dl distribution for full track and short track (L = 5m) respectively.
- The confidence belt is constructed by combining all the confidence intervals of the histograms at all the energies (100GeV to 50000GeV).

Reconstructed momentum resolution for with dQ/dl

• Left panel shows the resolution with full track length and right panel shows the resolution with short track segments (L = 5m) for 10 TeV muon events.

Reconstructed momentum resolution

- Left panel shows the resolution plots as a function of true muon momentum for the list of parameters presented in previous meeting³.
- Right panel shows the resolution plots with the previous list of parameters as well with the dQ/dl estimated with new MC sample.

³Jaydip, FD Simulation and Reconstruction Bi-Weekly : • Dec 14, 2020 Jaydip Singh FD Sim/Recon Bi-Weekly

Future work

- Reconstructed muon momentum resolution analysis for unidirectional events with the reconstructed variables dQ/dl and truncated dQ/dl.
- Test the algorithm with the cosmic muons events available in protoDUNE data.
- Improve the stopping muons algorithm and perform the calibration work with the MUSUN sample.
- Differentiating upward-going muons from downward-going muons using shower shapes.
- Systematic uncertainty evaluation. (muon radiation modeling, electronics saturation, recombination modeling in dense showers and electron lifetime).

Backup

Average energy on a wire

- preco = $\exp((A+B)/2)$.
- Where A is the top of the confidence region in log(p) for a particular muon, and B is the bottom of the confidence region in log(p) for the same muon.
- The suggested value is in the center of the interval.