Vertical Drift Photon Detection System Simulation

Laura Paulucci (UFABC) 10 May 2021

05/10/2021

Vertical drift single phase PDS

4 pi layout :

- Full trigger capabilities down to 10 MeV
- Energy, Position and T0
- xArapucas 60x60 on the cathode, 115 mq, analog readout
- xArapucas 60x60 on the cryo membrane, ~3m from Cathode

Minimal layout:

- Trigger via charge TPC readout down to 10 MeV
- T0, (Energy)
- xArapucas 60x60 on the cryo membrane, 20 columns, each column 18 xArapucas, SPHD readout

X-ARAPUCA Simulation

- Simulation of the photon detector \rightarrow improve collection efficiency
- Dependence on number and position of SiPMs and other geometrical effects

Reference Design Simulation

- Geant4
- Semi-transparent FC: T=70% and Cathode: T = 80%
- Anode R=20% (Xe)
- Abs length = 20 m
- $\lambda_{Ar} = 99.9 \text{ cm},$ $\lambda_{xe} = 8.5 \text{ m}$

PDS Reference Design: Light Yield Map

5 05/10/2021

PDS Backup Design: Light Yield Map

HD Single Phase PDS Requirements

Label	Description	Specification (Goal)	Rationale	Validation
SP-FD-3	Light yield	> 20 PE/MeV (avg), > 0.5 PE/MeV (min)	Gives PDS energy resolution comparable to that of the TPC for 5-7 MeV SN ν s, and allows tagging of > 99% of nucleon decay backgrounds with light at all points in de- tector.	Supernova and nu- cleon decay events in the FD with full simulation and re- construction.
SP-FD-4	Time resolution	< 1 µs (< 100 ns)	Enables 1 mm position reso- lution for 10 MeV SNB can- didate events for instanta- neous rate $< 1 \mathrm{m^{-3}ms^{-1}}$.	
SP-FD-15	LAr nitrogen con- tamination	$< 25 \mathrm{ppm}$	Maintain 0.5 PE/MeV PDS sensitivity required for trig- gering proton decay near cathode.	In situ measure- ment
SP-PDS-2	Spatial localization in y - z plane	$< 2.5 \mathrm{m}$	Enables accurate matching of PD and TPC signals.	SNB neutrino and NDK simulation in the FD

• Current taken as guidelines

7 05/10/2021

Position Resolution in the Reference Design

• From barycenter determination

Position Resolution in the Reference Design

- Resolution propto 1/sqrt(E)
- Good position resolution in x and z
- In y: less PD tiles
- Expect improvements with timing information

σ_y (m)

1.8 1.6

1.4

1.2

0.8

0.6

0.4

Energy Resolution in the Reference Design

- Photons at the center of top volume
 - Uncertainty on energy calibration (p0)
 - Statistical fluctuation (p1) on the number of detected PEs
 - Noise term (p2)

Trigger with the PDS: Backup Design

10 MeV events
 + ³⁹Ar background (10⁷ Bq)

 (N_{PE}, M_{Tile}) – Majority trigger condition

Targeting overall 99% tagging efficiency, two possible tagging combinations can be used
 (M_T, N_{pe}) = (13,2) - much more background robust, requires detectability of 2 p.e. signal with tiles
 (M_T, N_{pe}) = (5,3) - less background robust, easier to detect

Time Information in the Reference Design

- Optical waveforms taking into account
 - Emission time (Ar and Xe)
 - Propagation time
 - X-ARAPUCA QE
 - X-ARAPUCA shifters
 - SiPM (single PE profile, crosstalk...)
- Detector performance studies
 - Timing resolution
 - Digitizer requirements (dynamic range, sampling frequency...)
 - Improving position resolution

photons detected

Amplitude (ADC)

0.6

0.4

0.2

2000

Photon time of arrival for a given PD

5000

4000

3000

Corresponding waveform

7000

7000

t (ns)

9000

t (ns)

8000

6000

PDS Simulation Group

- Top priorities:
 - LArSoft simulation available
 - PDS Requirements
 - Comparison w/ Horiz. Drift (Light Yield, energy and timing resolutions and direct comparison for VD-Reference option and backup option)
 - Digitizer requirements (dynamic range, sampling freq., bandwidth)
 - PD trigger (and prompt background rejection) strategy
 - Goals for SNe and p-decay detection w/ PD

Summary:

- Current simulation efforts:
 - Tool for improving PDS performance
 - X-ARAPUCA
 - Anode reflection
 - PDs distribution...
 - Infrastructure for determination of VD PDS requirements
 - Infrastructure for physics studies
- Preliminary information on
 - Position and energy resolution
 - Trigger capabilities

BACKUP

Anode Reflection

 Impact of improving the anode reflectivity from 25% to 50%: Impact on LY uniformity

DUN

Reference Design: Light Yield Maps

17 05/10/2021

Reference Design Simulation

18 05/10/2021

DUNE

Trigger with the PDS: Early 4π design

• Events at lower LY region, no backgrounds

19 05/10/2021

Preliminary Dynamic Range Studies

DUNE

- 6 GeV e- shower @ 0.5m from cathode
- Pure LAr, λabsorption = 50m

20 05/10/2021